Учебная работа № 4056. «Контрольная Теория вероятности и математическая статистика. Вариант 4, задачи 1-4

Учебная работа № 4056. «Контрольная Теория вероятности и математическая статистика. Вариант 4, задачи 1-4

Количество страниц учебной работы: 6
Содержание:
«Вариант 4.
1. Из 450 деталей, изготовленных станком-автоматом оказалось 39 нестандартных. Оценить вероятность того, что произвольным образом взятая деталь окажется стандартной. Используя преобразование арксинуса, построить приближенные доверительные границы для этой вероятности при . Как изменится доверительный интервал, если при той же частости изготовления стандартных деталей число наблюдений возрастет в 25 раз?

2. В ходе социологических исследований, Стояла задача выявить, зависят ли миграционные установки выпускников от того, в каком регионе они живут. Результаты опроса представлены в таблице:
Город Навсегда уехать Жить в своем городе постоянно
Пермь 656 556
Екатеринбург 344 444
По имеющимся данным построить таблицу сопряженности и по ней 1) оценить тесноту связи между признаками; 2) при уровне значимости проверить нулевую гипотезу о независимости исследуемых признаков: место жительства респондента и его миграционная установка. Изменится ли принятое решение, если все данные увеличить в 40 раз?

3. Пусть вероятность того, что автомат по продаже горячих напитков сработает равна 0,97. Пользуясь теоремой Бернулли, оценить вероятность того, что при использовании 1000 наборов из купюр в автомате отклонение частости правильной работы автомата от ее вероятности не превысит по абсолютной величине 0,02.

4. Результаты наблюдений над величинами X и Y приведены в следующей таблице:
X 0 1 5 6
Y 5 3 4 7
Предполагая, что между X и Y имеется зависимость вида найти неизвестные коэффициенты a, b и c по методу наименьших квадратов. Вычислить Y при .

»

Стоимость данной учебной работы: 585 руб.Учебная работа № 4056.  "Контрольная Теория вероятности и математическая статистика. Вариант 4, задачи 1-4

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы


    со стандартным отклонением
    Привлекая покупателей, производитель
    хочет дать гарантию на этот узел, обещая
    сделать бесплатно любое число ремонтов
    коробки передач нового автомобиля в
    случае ее поломки до определенного
    срока, Пусть срок службы коробки передач
    подчиняется нормальному закону, На
    сколько месяцев в таком случае
    производитель должен дать гарантию для
    этой детали, чтобы число бесплатных
    ремонтов не превышало 2,275 % проданных
    автомобилей?

    РЕШЕНИЕ
    Срок службы должен оказаться в интервале

    а=56 мес,, мес,
    ,
    Применим формулу:

    Чтобы число бесплатных
    ремонтов не превышало 2,275% проданных
    автомобилей, производитель в данном
    случае должен дать гарантию для этой
    детали на 2 года,

    Задача 2,Тема: «Критические
    точки» (работа с таблицами)

    По заданной вероятности (и заданному
    числу степеней свободы k)
    найти критическую точку (квантиль
    ),
    пользуясь соответствующими таблицами
    (приложение 1–4):
    а) стандартного нормального распределения;
    б) распределения «хи-квадрат»;
    в) распределения Стьюдента;
    г) распределения Фишера,
    Нарисовать примерный вид графика
    плотности распределения, указать
    критическую точку, заштриховать площадь,
    соответствующую вероятности
    ,
    записать пояснения к рисунку,
    Вариант
    4: а) γ = 0,97;
    б) γ = 0,95, k
    = 6; в) γ = 0,95,
    k
    = 8; г) γ = 0,99,

    ,
    РЕШЕНИЕ
    а) γ = 0,97, Найти критическую точку
    стандартного нормального распределения,
    ,
    Критическая точка
    является
    границей, правее которой лежит 3% площади
    под кривой плотности стандартного
    нормального распределения, Значит
    площадь под этой кривой на интервалесоставляет 47% и в таблице значений
    функции Лапласа (приложение 1) ищем
    значениеЭто
    значение достигается прит,е