Учебная работа № 4054. «Контрольная Теория вероятности и математическая статистика. Вариант 3, задачи 1-4
Учебная работа № 4054. «Контрольная Теория вероятности и математическая статистика. Вариант 3, задачи 1-4
Содержание:
«Вариант 3.
1. За некоторый период времени в населенном пункте А в ночное время было совершено 68 преступлений, из которых оказалось 20 квартирных краж. За тот же промежуток времени в населенном пункте В в ночное время было совершено 102 преступления, среди которых оказалось 35 квартирных краж. Проверить гипотезу о равенстве вероятностей совершения квартирных краж ночью в населенных пунктах А и В при уровне значимости . Останется ли принятое решение в силе, если при тех же значениях частостей число преступлений, совершенных в А и В возрастет в 15 раз?
2. В ходе социологических исследований, касающихся отношения к религии, проведенных в Пермском крае и Нижегородской области были получены следующие результаты:
Субъект федерации Верю в Бога Убежденный атеист
Пермский край 63 27
Нижегородская область 46 54
По имеющимся данным построить таблицу сопряженности и по ней 1) оценить тесноту связи между признаками; 2) при уровне значимости проверить нулевую гипотезу о независимости исследуемых признаков: место жительства респондента и его веры в Бога.
3. Вероятность заболеть некоторой инфекционной болезнью в течение года для данной социальной группы, включающей 90000 человек, составляет 0,1. какова вероятность того, что число заболевших за год будет находиться в интервале от 8820 до 9270?
4. Результаты наблюдений над величинами X и Y приведены в следующей таблице:
X -1 0 1 4
Y 0 1 2 5
Предполагая, что между X и Y имеется зависимость вида найти неизвестные коэффициенты a, b и c по методу наименьших квадратов. Вычислить Y при .
»
Выдержка из похожей работы
со стандартным отклонением
Привлекая покупателей, производитель
хочет дать гарантию на этот узел, обещая
сделать бесплатно любое число ремонтов
коробки передач нового автомобиля в
случае ее поломки до определенного
срока, Пусть срок службы коробки передач
подчиняется нормальному закону, На
сколько месяцев в таком случае
производитель должен дать гарантию для
этой детали, чтобы число бесплатных
ремонтов не превышало 2,275 % проданных
автомобилей?
РЕШЕНИЕ
Срок службы должен оказаться в интервале
а=56 мес,, мес,
,
Применим формулу:
Чтобы число бесплатных
ремонтов не превышало 2,275% проданных
автомобилей, производитель в данном
случае должен дать гарантию для этой
детали на 2 года,
Задача 2,Тема: «Критические
точки» (работа с таблицами)
По заданной вероятности (и заданному
числу степеней свободы k)
найти критическую точку (квантиль
),
пользуясь соответствующими таблицами
(приложение 1–4):
а) стандартного нормального распределения;
б) распределения «хи-квадрат»;
в) распределения Стьюдента;
г) распределения Фишера,
Нарисовать примерный вид графика
плотности распределения, указать
критическую точку, заштриховать площадь,
соответствующую вероятности
,
записать пояснения к рисунку,
Вариант
4: а) γ = 0,97;
б) γ = 0,95, k
= 6; в) γ = 0,95,
k
= 8; г) γ = 0,99,
,
РЕШЕНИЕ
а) γ = 0,97, Найти критическую точку
стандартного нормального распределения,
,
Критическая точка
является
границей, правее которой лежит 3% площади
под кривой плотности стандартного
нормального распределения, Значит
площадь под этой кривой на интервалесоставляет 47% и в таблице значений
функции Лапласа (приложение 1) ищем
значениеЭто
значение достигается прит,е