Учебная работа № /8764. «Контрольная Высшая математика, контрольная работа 1
Учебная работа № /8764. «Контрольная Высшая математика, контрольная работа 1
Содержание:
Контрольная работа №1.
115. Даны матрицы
.
Найти матрицу ; обратную матрицу (и сделать проверку); решить систему с помощью обратной матрицы.
125. Используя теорему Кронекера — Капелли, доказать совместность системы линейных уравнений:
Найти общее решение методом Гаусса и какое-либо частное решение.
135. Даны точки . Вычислить:
а) скалярное произведение ;
б) векторное произведение ;
в) смешанное произведение .
145. Даны вершины треугольника . Составить уравнения медианы и высоты , проведенные из вершины .
155. Написать уравнение плоскости, проходящей через прямую и через точку .
165. Линия на плоскости задана уравнением в полярной системе координат: .
а) Построить линию по точкам, придавая значения с шагом (вычисления проводить с двумя знаками после запятой);
б) перейти от полярного уравнения к ее декартовому уравнению и построить кривую.
175. Даны комплексные числа и .
а) Вычислить ;
б) найти модуль и аргумент числа z;
в) записать число z в тригонометрической и показательной формах;
г) используя формулу Муавра, представить в алгебраической форме число z3;
д) найти все значения корня и построить их на комплексной плоскости.
Выдержка из похожей работы
Решение,
а) Найдем координаты вектора А1В1 по формуле
где — координаты точки А1, -координаты точки В1,
Итак ={1-(-2);-3-2;0-2}={3;-5;-2}, Тогда = =,
Итак, длина отрезка, (или длина векторе) равна , Это и есть искомая длина ребра,
б) Координаты ={3;-5;-2} уже известны, осталось определить координаты вектора ={6- (-2); 2 — 2; 4 — 2}= {8,0; 2},
Угол между векторами и вычислим по формуле
cos ? = (А1В1, А1С1)
А1В1· А1С1
где скалярое произведение векторов А1В1 и А1С1 равно (,)=3·8+(-5)·0+(-2)=24+0-4=20,
=, ==,
Итак, cos ? = 20 = 10
·
в) Координаты точки А1(-2,2,2) обозначим соответственно Х0 = -2, У0 = 2, Z0 = 2, а координаты точки В1(1,-3,0) через X1 = 1, У1 = -3, Z1 = 0 и воспользуемся уравнением прямой и пространстве, проходящей через две точки:
,
Следовательно, уравнение ребра имеет вид
,
г) Обозначим координаты векторов, и через Х1=3, У1= -5, Z1= -2 и Х2=8, У2= 0, Z2=2 соответственно, Векторное произведение данных векторов определяется формулой
·A1C1 = {Y1·Z2-Y2·Z1;Z1·X2-Z2·X1;X1·Y2-X2·Y2} =
= {(-5)·2-0·(-2);-2·8-2·3;3·0-8·(-5)}={-10,-22,40}
Так как данный вектор перпендикулярен грани С1, то можно воспользоваться уравнением плоскости, проходящей через точку (Х0 У0, Z0) перпендикулярно вектору {А;В;С}, которое имеет вид A·(X-X0)+B·(Y-Y0)+С·(Z-Z0)=0,
Подставим координаты точки А1 (Хо= -2, У0=2, Z0=2) и координаты перпендикулярного вектора А= -10, В= -22, С=40 в это уравнение:
— 10 ( X + 2 ) — 22 (У — 2) т 40 ( Z- 2) — 0, Раскроем скобки и приведем подобные члены — 10 х -22 у + 40z + (-20 + 44-80)=0, Итак, уравнение грани,C1 имеет вид: -10х- 22у + 4О z-56=0 или -5х- lly + 20z-28=0,
ЗАДАЧА 2,
Решите систему линейных уравнений
а) методом Крамера;
б) методом Гаусса;
Решение,
а) Решим данную систему уравнений с помощью формул Крамера (см,[2] глава 10, стр, 268), Рассмотрим произвольную систему трех линейных уравнений с тремя неизвестными:
Решение,
а) Решим данную систему уравнений с помощью формул Крамера ( см, [2] глава 10, стр, 268),
Тогда , где
Так как ?x= -60; ?y= -60; ?z=60; ?= -120, то x=; y=; z=,
6) решим данную систему уравнений методом Гаусса, Метод Гаусса состоит в том, что �� помощью элементарных преобразований система уравнении приводится к равносильной системе ступенчатого (или треугольного) вида из которой последовательно, начиная с последнего уравнения, легко находят все неизвестные системы,
Составим расширенную матрицу данной системы,
Поменяем местами первую и вторую строки матрицы, чтобы в ее левом верхнем углу была единица, Получим матрицу»