Учебная работа № /8595. «Контрольная Высшая математика, вариант 3

Учебная работа № /8595. «Контрольная Высшая математика, вариант 3

Количество страниц учебной работы: 7
Содержание:
Задание 1
В лотерее выпущено 10000 билетов и установлено 10 выигрышей по 5000 руб., 100 выигрышей по 1000 руб., 500 выигрышей по 250 руб. и 1000 выигрышей по 50 руб. Гражданин купил один билет. Какова вероятность того, что у него:
1) окажется выигрышный билет
2) что его выигрыш составит не менее 250 руб.?
Задание 2
Из 20 Акционерных обществ 4 являются банкротом. Гражданин приобрел по одной акции шести АО. Какова вероятность того, что среди этих акций 2 окажутся акциями банкротов?
Задание 3
Три стрелка попадают в мишень с вероятностями 0,85; 0,8; 0,7. Найти вероятность того, что при одновременном выстреле всех трех стрелков в мишени будут пробиты два отверстия.
Задание 4
В обувную мастерскую для ремонта приносят сапоги и туфли в соотношение 2:3. Вероятность качественного ремонта для сапог 0,9, а для туфель – 0,85. Проведена проверка качества одной пары обуви. Оказалось, что она отремонтирована качественно. Какова вероятность, что это:
1) сапоги?
2) туфли?
Задание 5
Четыре покупателя приехали на оптовый склад. Вероятность того, что каждому из них потребуется холодильник марки «А» равна 0,4. Найти вероятность того, что такой холодильник потребуется:
1) всем четырем покупателям
2) не более, чем трем покупателям
3) не менее, чем двум.
Задание 6
Устройство состоит из трех независимо работающих элементов. Вероятность отказа каждого элемента равна 0,15. Составьте ряд распределения числа отказавших элементов. Запишите результаты в таблицу распределения. Сделайте вывод о наиболее вероятном режиме работы устройства.
Задание 7
Ряд распределения дискретной случайной величины имеет вид: … Запишите функцию распределения и постройте ее график.
Задание 8
Для ряда распределения из задания 7 найти математическое ожидание М(Х), дисперсию D(Х) и среднеквадратическое отклонение σ(Х).
Задание 9
Найти математическое ожидание и дисперсию величины У=2. Х-1, если Х-это случайная величина, заданная таблицей в задании 7.
Задание 10
Путем измерения получена таблица зависимости величин х и y:
1. Построить эмпирическую линию регрессии
2. Рассчитать коэффициенты прямой регрессии y по х
3. Записать уравнение прямой регрессии y по х
4. Построить график регрессии на том же поле, где построена эмпирическая линия
5. Рассчитать коэффициент корреляции
6. Сделать вывод о тесноте связи между величинами х и y.

Стоимость данной учебной работы: 150 руб.Учебная работа № /8595.  "Контрольная Высшая математика, вариант 3

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы

    ru/
    ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ
    ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
    ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
    «СИБИРСКАЯ АКАДЕМИЯ ГОСУДАРСТВЕННОЙ СЛУЖБЫ»
    Кафедра математики и информатики

    Письменное контрольное задание
    для студентов и слушателей дистанционного обучения
    Решение задач по курсу высшей математики
    Новосибирск 2011
    1, Решить задачу линейного программирования
    линейное программирование среднее отклонение выборка
    №5,
    х1 + 3х2 max
    Решение, Изобразим графики линий, задавая точки
    а),+=2 и
    б), +2х2 =7 и
    в), 4х1 — 3х2 = 6 и
    F: х1+3х2 = 0 и
    ОАВСД- многоугольник множества решений данной системы, Среди точек многоугольника ОАВСД выбираем такую, в которой целевая функция достигает максимального значения, Пересечем этот многоугольник прямой (задающей целевую функцию ) и перемещаем прямую параллельно самой себе, пока многоугольник условий не окажется ниже этой прямой, Предельное положение этой прямой — точка В — точка пересечения прямых а) и б), Получили В (1,3), значит
    F= 1 + 3*3 = 10
    Ответ, Максимальное значение функции равно 10
    Задание 2, Составить и решить задачу линейного программирования
    № 5, Караван Марко Поло использует для перевозки сухого инжира из Багдада в Мекку дромадеров (одногорбых верблюдов) и Обычных (двугорбых) верблюдов, Верблюд может нести 1000 фунтов груза, а дромадер — 500 фунтов, За время пути верблюд потребляет 3 тюка сена и 100 галлонов воды, а дромадер 4 тюка сена и 80 галлонов воды, Вдоль пути Марко Поло имеются пункты снабжения, расположенные в оазисах, Общая емкость запасов на этих участках 1600 галлонов воды и 60 тюков сена, Верблюды и дромадеры нанимаются у пастуха около Багдада, Стоимость аренды верблюда 11 монет, а дромадера — 5 монет, Караван должен доставить из Багдада в Мекку не менее 10000 фунтов инжира,
    Составить задачу линейного программирования о минимальных издержках на аренду верблюдов и дромадеров, Сколько потребуется верблюдов и дромадеров, чтобы арендная плата пастуху была минимальной?
    Решение
    Пусть х — число дромадеров, у — число верблюдов,
    Согласно условию задачи получим систему неравенств

    Целевая функция F: 5х + 11 у max
    Изобразим гр��фики линий, задавая точки
    1, 500 х + 1000у=10000,
    Х + 2у = 20 (0,10) и (10,5)
    2, 4 х + 3 У = 60 (0,20) и (15,0)
    3, 80 х + 100 у = 1600
    4 х + 5 у = 80 (0,16) и (20,0)
    Целевая функция F: 5х + 11у = 0 (0,0) и (11,-5)

    АВС- многоугольник множества решений данной системы, Среди точек многоугольника АВС выбираем такую, в которой целевая функция достигает минимального значения, Пересечем этот многоугольник прямой (задающей целевую функцию ) и перемещаем прямую параллельно самой себе, пока многоугольник условий не окажется выше этой прямой,
    Минимального значения целевая функция достигнет в точке С- точке пересечения прямых 1, И 2: 2х + у =20 и 3х + 4у +80″