Учебная работа № /8367. «Контрольная Теория вероятности и математическая статистика, вариант 7

Учебная работа № /8367. «Контрольная Теория вероятности и математическая статистика, вариант 7

Количество страниц учебной работы: 8
Содержание:
Задача 1
В книжной лотерее разыгрывается n = 4 книг. Всего в урне имеется N = 15 билетов. Первый подошедший к урне вынимает два билета. Определить вероятность того, что оба билета окажутся выигрышными.
Задача 2
Для сигнализации о возгорании установлены два независимо работающих датчика. Вероятности того, что при возгорании датчик сработает, для первого и второго датчиков соответственно равны р1 = 0,4 и р2 = 0,5. Найти вероятность того, что при пожаре сработает:
а) хотя бы один датчик;
б) ровно один датчик.
Задача 3
В тире имеется 5 различных по точности боя винтовок. Вероятность попадания в мишень для данного стрелка соответственно равна 0,5, 0,55, 0,7, 0,75 и р = 0,55. Чему равна вероятность попадания в мишень, если стрелок делает один выстрел из случайно выбранной винтовки? Попадание произошло. Чему равна вероятность того, что была выбрана вторая винтовка?
Задача 4
Вероятность того, что баскетболист при броске попадает в корзину, равна р = 0,55. Определить вероятность того, что, сделав n = 7 бросков, он m = 4 раз попадет.
Задача 5
Вероятность появления бракованных деталей при их массовом производстве равна р = 0,001. Определить вероятность того, что в партии из N = 900 деталей будет:
а) ровно 3 бракованных деталей;
б) не более 3-х бракованных деталей.
Задача 6
В жилом доме имеется n = 2500 ламп, вероятность включения каждой из них в вечернее время равна 0,5. Найти вероятность того, что число одновременно включенных ламп будет заключено между m1 = 1225 и m2 = 1250.
Задача 7
Случайная величина Х задана рядом распределения
xi -3 0 1 2 4
pi р1 = 0,1 p2 = 0,2 p3 = 0,4 p4 = 0,2 p5 = 0,1
а) найти математическое ожидание, дисперсию, среднее квадратическое отклонение случайной величины Х;
б) найти вероятности р(Х  0), р(Х  0), р(-1  Х  4);
в) построить ряд распределения величины Y = 2Х + b;
г) найти числовые характеристики случайной величины Y.
Задача 8
Футболист бьет N = 7 раз пенальти. Вероятность забить при одном ударе равна р = 0,3. Составить ряд распределения случайной величины Х – числа забитых мячей. Найти математическое ожидание и дисперсию случайной величины Х.
Задача 9
Случайная величина Х имеет нормальное распределение N(a; ) = N(7;7). Найти р(Х  1), р(-1  Х 1), р(-2 Х – а  2).

Стоимость данной учебной работы: 585 руб.Учебная работа № /8367.  "Контрольная Теория вероятности и математическая статистика, вариант 7

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы


    Личное дело № 09ФФ941717
    Преподаватель Коропец А,А
    Орел 2010
    Задание 1

    Данные о продолжительности телефонных разговоров, отобранные по схеме собственно-случайной бесповторной выборки, приведены в таблице:

    Время,
    мин

    1,5—2,5

    2,5—3,5

    3,5—4,5

    4,5—5,5

    5,5—6,5

    6,5—7,5

    7,5—8,5

    8,5—9,5

    9,5- 10,5

    Итого

    Число разговоров

    3

    4

    9

    14

    37

    12

    8

    8

    5

    100

    Найти:
    а) границы в которых с вероятностью 0,9973 заключена средняя продолжительность телефонных разговоров всех абонентов (число которых очень велико);
    б) число телефонных разговоров, при котором с вероятностью 0,97 можно было утверждать, что доля всех разговоров продолжительностью не более 6,5 минут отличается от доли таких разговоров в выборке не более, чем на 0,1 (по абсолютной величине);
    в) вероятность того, что отклонение той же доли в выборке от генеральной доли (см, п, б)) не превзойдет 0,05 (по абсолютной величине),
    Решение
    а) Найдем выборочную среднюю и выборочную дисперсию используя формулы:

    К- длина интервала (1) С- середина среднего интервала (6)
    Результат оформим в таблице,

    интервал

    средний интервал

    m

    U1

    U1m

    U1^2

    U1^2m

    1

    1,5-2,5

    2

    3

    -4

    -12

    16

    48

    2

    2,5-3,5

    3

    4

    -3

    -12

    9

    36

    3

    3,5-4,5

    4

    9

    -2

    -18

    4

    36

    4

    4,5-5,5

    5

    14

    -1

    -14

    1

    14

    5

    5,5-6,5

    6

    37

    0

    0

    0

    0

    6

    6,5-7,5

    7

    12

    1

    12

    1

    12

    7

    7,5-8,5

    8

    8

    2

    16

    4

    32

    8

    8,5-9,5

    9

    8

    3

    24

    9

    72

    9

    9,5-10,5

    10

    5

    4

    20

    16

    80

    Итого

    100

    16

    330

    — выборачная средняя
    по таблице критических точек Лапласа t=3
    предельная ошибка выборки
    границы: ; 6,16-0,542Х06,16+0,542; 5,618 Х06,702
    Таким образом с надежностью 0,9973 средняя продолжительность телефонных разговоров всех абонентов заключена в границах от 5,618 до 6,702
    б) В качестве неизвестного значения ген��ральной доли р возьмем ее состоятельную оценку w, которая определяется по формуле:
    = 3+4+9+14+37/100= 0,67
    m — число единиц совокупности, обладающих заданным свойством;
    n — общее число единиц в совокупности,
    Учитывая, что у=Ф(t) = 0,97 и t=2,17, найдем объем бесповторной выборки по формуле:
    — известна из пункта а),
    При Р = 0,9545 коэффициент доверия t = 2 (по таблице значений функции Лапласа Ф(t)),
    разговоров
    Вывод, Для того, чтобы обеспечить долю всех разговоров продолжительностью не более 6,5 минут необходимо отобрать в выборочную совокупность 104 разговоров,
    в) Средняя квадратичная ошибка (из предыдущих расчетов) рассчитаем по формуле:
    Теперь искомую доверительную вероятность находим по формуле:
    = Ф=Ф(1,06)=0,7109
    Т,е, искомую вероятность того, что отклонение той же доли в выборке от генеральной доли не превзойдет 0,05 (по абсолютной величине), равна 0,7109
    Задание 2

    По данным задачи 1, используя -критерий Пирсона, уровне значимости б = 0,05 проверить гипотезу о том, что случайная величина Х — продолжительность телефонных разговоров — распределена по нормальному закону, дисперсия гистограмма корреляция регрессия
    Построить на одном чертеже гистограмму и соответствующую нормальную кривую,
    Решение
    Для решения используем следующие формулы:
    ; ;
    Результаты расчетов представим в таблице

    Xi-xi+1

    hi

    Wi=hi/n

    Zi

    Zi+1

    Pi

    h,i=n*Pi

    1,5-2,5

    3

    0,03

    -2,01

    -1

    -0,9556

    0,022

    2,22

    0,0067

    2,5-3,5

    4

    0,04

    -2,01

    -1,46

    -0,9556

    -0,8557

    0″