Учебная работа № /8321. «Контрольная Теория вероятностей, 3 задачи 14

Учебная работа № /8321. «Контрольная Теория вероятностей, 3 задачи 14

Количество страниц учебной работы: 8
Содержание:
1. В результате выборочного обследования российских автомобилей, обслуживающихся в автосервисе по гарантии, по схеме собственно-случайной бесповторной выборки из 280 автомобилей были выбраны 60. Полученные данные о пробеге автомобилей с момента покупки до первого гарантийного ремонта представлены в таблице.
Пробег, тыс.км. Менее 1 1 – 2 2 – 3 3 – 4 4 – 5 5 – 6 Более 6 Итого
Число автомобилей 3 5 9 16 13 8 6 60
Найти:
1) вероятность того, что средний пробег всех автомобилей отличается от среднего пробега автомобилей в выборке не более, чем на 400 км (по абсолютной величине);
2) границы, в которых с вероятностью 0,95 заключена доля автомобилей, пробег которых составляет менее 3 тыс.км.
3) объем бесповторной выборки, при котором те же границы для доли можно гарантировать с вероятностью 0,9876.
2. По данным задачи 1, используя критерий χ2 — Пирсона, при уровне значимости α=0,05 проверить гипотезу о том, что случайная величина Х – пробег автомобиля в месяц – распределена по нормальному закону. Построить на одном чертеже гистограмму эмпирического распределения и соответствующую нормальную кривую.
Распределение 60 банков по величине процентной ставки Х (%) и размеру выданных кредитов Y (млн.руб.) представлено в таблице.
Х У 2 – 5 5 – 8 8 – 11 11 – 14 14 – 17 Итого
11 – 13 1 6 7
13 – 15 4 7 3 14
15 – 17 1 11 5 1 18
17 – 19 4 5 2 11
19 – 21 8 2 10
Итого 12 8 17 13 10 60
Необходимо:
1) Вычислить групповые средние и , построить эмпирические линии регрессии.
2) Предполагая, что между переменными Х и У существует линейная корреляционная зависимость:
а) найти уравнения прямых регрессии, построить их графики на одном чертеже с эмпирическими линиями регрессии и дать экономическую интерпретацию полученных уравнений;
б) вычислить коэффициент корреляции; на уровне значимости оценить его значимость и сделать вывод о тесноте и направлении связи между переменными Х и У;
в) используя соответствующее уравнение регрессии, определить средний размер выданного банком кредита, процентная ставка которого равна 16%.

Стоимость данной учебной работы: 585 руб.Учебная работа № /8321.  "Контрольная Теория вероятностей, 3 задачи 14

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы


    Исходные данные: N=18,
    Решение задачи:
    Вероятностью случайного события А называется отношение числа равновозможных элементарных событий, благоприятствующих этому событию, к числу всех равновозможных элементарных событий пространства Е, определяемого данным испытанием,

    Р(А) =

    m

    n

    где: n — число всех равновозможных элементарных событий, вытекающих из условий данного испытания;
    m — число равновозможных событий, которые благоприятствуют событию А,
    а) при сумме числа очков (N = 18), не превосходящих N:
    n = 36;m = 36

    Р(А) =

    36

    =

    1 ;

    36

    б) при произведении числа очков, не превосходящих N:
    n = 28;m = 36

    Р(А) =

    28

    =

    7

    0,778 ;

    36

    9

    в) при произведении числа очков, делящихся на N:
    n = 3;m = 36

    Р(А) =

    3

    =

    1

    0,083 ,

    36

    12

    Ответы:
    а) Р(А) = 1 ;
    б) Р(А) = 7/9 0,778 ;
    в) Р(А) = 1/12 0,083,
    Задача 2
    Имеются изделия четырех сортов, причем число изделий i-го сорта равно =1, 2, 3, 4, Для контроля наудачу берутся т изделий, Определить вероятность того, что среди них т1 первосортных, т2, т3 и т4 второго, третьего и четвертого сорта соответственно ,
    Исходные данные: n1 = 3; n2 = 1; n3 = 6; n4 = 2;m1 = 2; m2 = 1; m3 = 3; m4 = 1,
    Решение задачи,
    Определяем количество способов нужной комбинации:
    С = Сn1 m1 x Сn2 m2 x Сn3 m3 x Сn4 m4 = С3 2 x С1 1 x С6 3 x С2 1 ;
    Определяем количество всех возможных способов:
    С = Сn1+n2+n3+n4 m1+m2+m3+m4 = С12 7 ;
    3) Определяем вероятность Р согласно условия задачи:

    Р =

    С3 2 x С1 1 x С6 3 x С2 1

    =

    3 х 1 х

    4 х 5 х 6

    х 2

    =

    2 х 3

    С12 7

    8 х 9 х 10 х 11 х 12

    2 х 3 х 4 х 5

    =

    3 х 5

    =

    5

    0,15

    9 х 11

    33

    Ответ: Р = 5/33 0,15 ,

    Задача 3
    Среди п лотерейных билетов k выигрышных, Наудачу взяли т билетов, Определить вероятность того, что среди них выигрышных,
    Исходные данные: n = 8; l = 3; m = 5; k = 4,
    Решение задачи,

    Общее число случаев, очевидно, равно Сn m , число благоприятных случаев Сk l x Сn-k m-l , откуда:

    Р(А) =

    Сk l x Сn-k m-l

    =

    С4 3 x С8-4 5-3

    =

    3

    0, 4286 ,

    Сn m

    С8 5

    7

    Ответ: Р(А) = 3/7 0, 4286 ,

    Задача 7
    В круге радиуса R наудачу появляется точка, Определить вероятность того, что она попадает в одну из двух непересекающихся фигур, площади которых равны S1 и S2, Исходные данные:R =14; S1 = 2,6; S2 = 5,6,
    Решение задачи

    P(A) =

    S

    ,

    R2

    P(A1) =

    S1

    =

    2,6

    0,0042246 ;

    R2

    3,14 x 142

    P(A2) =

    S2

    =

    5,6

    0,0090991 ;

    R2

    3,14 x 142

    P(A) =

    S1+ S2

    =

    2,6 + 5,6

    =

    8,2

    0,013324 ,

    R2

    3,14 x 142

    615,44

    Ответ: Р(А) 0,013324 ,
    Задача 8
    В двух партиях k1 и k2 % доброкачественных изделий соответственно, Наудачу выбирают по одному изделию из каждой партии, Какова вероятность обнаружить среди них:
    а) хотя бы одно бракованное;
    б) два бракованных;
    в) одно доброкачественное и одно бракованное?
    Исходные данные: k1 = 81; k2 = 37,
    Решение задачи
    События А и В называются независимыми, если выполняется соотношение:
    Р(А/В) = Р(А) / Р(В) ,
    Для любых событий А и В имеет место формула:
    Р(А+В) = Р(А) + Р(В) — Р(АВ) ,
    Обозначения:
    Событие А — выбрали бракованное изделие из 1-й партии (1 — k1) ;
    Событие B — выбрали бракованное изделие из 2-й партии (1 — k2) ,
    События А и В — независимые»