Учебная работа № /8312. «Контрольная Математическая модель, задача 9
Учебная работа № /8312. «Контрольная Математическая модель, задача 9
Содержание:
«Условие задачи №9
Для рационального питания новомодная диета предлагает использовать два продукта – P и Q. Дневное питание этими новинками должно давать не более 14 единиц жира (чтобы похудеть), но и не менее 300 калорий (чтобы не сойти с дистанции раньше). На банке с продуктом Р написано, что в одном килограмме этого продукта содержится 15 единиц жира и 150 калорий, а на банке с продуктом Q – 4 единицы жира и 200 калорий соответственно. При этом цена 1 кг продукта Р равна 15 р., а 1 кг продукта Q – 25 р.
В какой пропорции нужно брать эти удивительные продукты Р и Q для того, чтобы похудеть, выдержать условия диеты и истратить как можно меньше денег?
»
Выдержка из похожей работы
Кафедра Информационных систем
Контрольная работа
по дисциплине:
«Экономико-математические методы и модели»
на тему:
«Типовые математические модели экономических задач линейного программирования »
Выполнил: студент 2 курса заочного отделения
по специальности: 060800 «Экономика и
управление на предприятиях АПК»
шифр ЭКР-2010-404
Рудометов
Проверил: О,Ю, Вшивков
Пермь-2015
Содержание
1, Типовые математические модели экономических задач линейного программирования: задача об оптимальном использовании ресурсов, задача о производственных мощностях
2, Задача линейного программирования
3, Транспортная задача
Список использованной литературы
1, Типовые математические модели экономических задач линейного программирования: задача об оптимальном использовании ресурсов, задача о производственных мощностях
Многие задачи, с которыми приходится иметь дело в повседневной практике, являются многовариантными, Среди множества возможных вариантов в условиях рыночных отношений приходится отыскивать наилучшие в некотором смысле при ограничениях, налагаемых на природные, экономические и технологические возможности, В связи с этим возникла необходимость применять для анализа и синтеза экономических ситуаций и систем математические методы и современную вычислительную технику,
Такие методы объединяются под общим названием — математическое программирование,
Математическое программирование — область математики, разрабатывающая теорию и численные методы решения многомерных экстремальных задач с ограничениями, т,е, задач на экстремум функции многих переменных с ограничениями на область изменения этих переменных,
Функцию, экстремальное значение которой нужно найти в условиях экономических возможностей, называют целевой, показателем эффективности или критерием оптимальности, Экономические возможности формализуются в виде системы ограничений, Все это составляет математическую модель, Математическая модель задачи — это отражение оригинала в виде функций, уравнений, неравенств, цифр и т,д, Модель задачи математического программирования включает:
1) совокупность неизвестных величин, действуя на которые, систему можно совершенствовать, Их называют планом задачи (вектором управления, решением, управлением, стратегией, поведением и др,);
2) целевую функцию (функцию цели, показатель эффективности, критерий оптимальности, функционал задачи и др,), Целевая функция позволяет выбирать наилучший вариант — из множества возможных, Наилучший вариант доставляет целевой функции экстремальное значение, Это может быть прибыль, объем выпуска или реализации, затраты производства, издержки обращения, уровень обслуживания или дефицитности, число комплектов, отходы и т,д,
Эти условия следуют из ограниченности ресурсов, которыми располагает общество в любой момент времени, из необходимости удовлетворения насущных потребностей, из условий производственных и технологических процессов, Ограниченными являются не только материальные, финансовые и трудовые ресурсы, Таковыми могут быть возможности технического, технологического и вообще научного потенциала, Нередко потребности превышают возможности их удовлетворения, Математически ограничения выражаются в виде уравнений и неравенств»