Учебная работа № /8248. «Контрольная Теория вероятностей, задачи 3,4
Учебная работа № /8248. «Контрольная Теория вероятностей, задачи 3,4
Содержание:
3. В лаборатории имеются 6 калькуляторов и 4 компьютера. Вероятность безотказной работы калькулятора равна 0,95, а компьютера 0,8. Производится расчёт наудачу в выбранном устройстве. Найти вероятность того, что во время расчёта устройство не выйдет из строя.
4. Вставить отсутствующее значение вероятности и найти M D случайной величины
1 2 3 4 5
pi 0,10 0,25 0,20 0,30
Выдержка из похожей работы
Проверил:
Глаголева Марина Олеговна
Тула 2014год
Задание №1
Бросаются два игральных кубика, Найти вероятность того, что сумма выпавших очков
1) равна 6;
2) не превосходит 7;
3) больше 7,
Решение,
Используем классическое определение вероятности , В нашем случае общее число исходов равно ,
Благоприятное число исходов равно и искомая вероятность ,
Благоприятное число исходов равно и искомая вероятность ,
Благоприятное число исходов равно и искомая вероятность ,
Задание №2
В ящике находится 7 гвоздей, 7 шурупов и 8 болтов, Наудачу выбирают две детали, Найдите вероятность того, что достали
1) два болта;
2) два шурупа;
3) гвоздь и болт;
4) болт и шуруп,
Решение,
Используем классическое определение вероятности , В нашем случае общее число исходов равно ,
Благоприятное число исходов равно и искомая вероятность ,
Благоприятное число исходов равно и искомая вероятность ,
Благоприятное число исходов равно и искомая вероятность ,
Благоприятное число исходов равно и искомая вероятность ,
Задание №3
В ящике находится 7 гвоздей, 7 шурупов и 8 болтов, Наудачу выбирают три детали, Найдите вероятность того, что достали
1) три болта;
2) один болт и два шурупа;
3) болт, гвоздь и шуруп,
Решение,
Используем классическое определение вероятности , В нашем случае общее число исходов равно ,
Благоприятное число исходов равно и искомая вероятность ,
Благоприятное число исходов равно и искомая вероятность ,
Благоприятное число исходов равно и искомая вероятность ,
Задание №4
Пассажир может приобрести билет в одной из двух касс, Вероятность обращения в первую кассу составляет 0,4, а во вторую — 0,6, Вероятность того, что к моменту прихода п��ссажира нужные ему билеты будут распроданы, будет равна 0,35 для первой кассы и 0,7 для второй»