Учебная работа № /7964. «Контрольная Эконометрика, 3 задачи 31
Учебная работа № /7964. «Контрольная Эконометрика, 3 задачи 31
Содержание:
«Задача 1. Построить модель, отражающую зависимость среднесуточной производительности (Y) от стоимости основных производственных фондов (X), проверить ее адекватность, осуществить точечный и интервальный прогноз.
Таблица №1.
X Y
2 14,3
2,3 18,6
2,1 20,9
2,4 18,7
2,9 24,2
3,3 22,3
3,8 25,7
4,6 27
5,1 32,2
5,4 31
Задание на выполнение задачи 1: (Алгоритм действий)
1). Исходные данные отложите на координатной плоскости и сделайте предварительное заключение о наличии связи, виде (прямая или обратная) и форме (линейная или нелинейная) связи между признаками X и У.
2). Рассчитайте линейный коэффициент корреляции . Используя t-критерий Стьюдента, проверьте значимость коэффициента корреляции, как показателя близости зависимости к линейной. Сделайте вывод о тесноте связи между признаками X и У.
3). Полагая, что связь между факторами X и У может быть
описана линейной функцией, используя процедуру метода
наименьших квадратов, получите систему нормальных
уравнений относительно коэффициентов линейного уравнения регрессии (запишите систему нормальных уравнений). Любым способом рассчитайте эти коэффициенты.
4). Для полученной модели связи между признаками X и У
рассчитайте среднюю ошибку аппроксимации (е). Сделайте
предварительное заключение о приемлемости полученной
модели.
5). Проверьте значимость коэффициентов уравнения регрессии на основе t-критерия Стьюдента. Сформулируйте вывод.
6). Проверьте адекватность модели (уравнения регрессии) в целом на основе
F-критерия Фишера-Снедекора.
Сформулируйте вывод.
7). Рассчитайте средний коэффициент эластичности (Э). Что он
показывает?
8). Выполните точечный прогноз для .
9). Рассчитайте доверительные интервалы для уравнения регрессии и для результативного признака при и доверительной вероятности .
10). Изобразите в одной системе координат: исходные данные, линию регрессии, точечный прогноз (х*,у*) и отметьте доверительный интервал для .
11). Сформулируйте общий вывод относительно полученной математической модели.
Задача 2.
Для прогнозирования квартального спроса плодоовощных консервов в регионе были проанализированы данные по кварталам в период с 2002 по 2005 годы, которые представлены в таблице 3.
Требуется сделать прогноз средний квартальный спрос плодоовощной продукции на четыре квартала 2006 года с надежностью 0,95 и построить автокорреляционную функцию, характеризующую внутреннюю структуру спроса. Построение аддитивной математической модели и прогнозные расчеты провести по алгоритму, изложенному в данном методическом указании, с изображением элементов временного ряда на графиках.
Примечание: Из таблицы 3 видно, что спрос в своей динамике содержит сезонные колебания, которые можно объяснить снижением спроса на консервы в летние и осенние месяцы в связи с появлением на рынке свежей плодоовощной продукции.
Задача 3. Пусть в таблице 4 представлены данные наблюдений за динамикой объемов производства в зависимости от объема инвестиций в предприятие.
В таблице 4: — объем производства, тыс. руб., — объем инвестиций в предприятие, тыс. руб.
Таблица 4
Динамика объемов производства (у, в ценах 1987 г.,тыс. руб.)
и валовых внутренних инвестиций в предприятие
(х, в ценах 1987 г., тыс. руб.)*
Год Y X
1987 2965 480
1988 3109 532
1989 3268 591
1990 3248 543
1991 3221 437
1992 3380 520
1993 3533 600
1994 3703 664
1995 3796 669
1996 3776 594
1997 3843 631
1998 3760 540
1999 3906 599
2000 4148 757
2001 4279 745
2002 4404 735
2003 4540 749
2004 4781 773
2005 4836 789
2006 4884 744
Требуется построить математическую модель, отражающую зависимость объема производства от величины инвестиций с распределенным лагом на величину 3 года и сделать прогноз по этой модели среднего объема производства на 2007 год при объеме инвестиций в 800 тыс. руб.
»
Выдержка из похожей работы
По данным представленным в таблице, изучается зависимость результативного признака (У) от факторного (У),
Номера результативного, факторного признаков, наблюдений определяются в соответствии с номером варианта,
№ п/п
Запасы влаги в почве, мм
Бонитировочный балл
Номер признака
Х
У
1
144
75
2
110
54
3
110
61
4
177
64
5
186
72
6
112
69
7
148
79
8
151
73
9
110
60
10
151
72
11
131
54
12
113
77
13
110
57
14
127
72
15
136
72
16
136
67
17
144
72
18
100
55
19
148
68
20
129
68
Задание
1, Рассчитайте параметры парной линейной регрессии,
2, Оцените тесноту связи с помощью показателей корреляции и детерминации,
3, Оцените с помощью средней ошибки аппроксимации качество уравнений,
4, Оцените статистическую значимость уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента,
5, Рассчитайте прогнозное значение результата, если прогнозное значение фактора увеличится на 10% от его среднего уровня (), Определите доверительный интервал прогноза для уровня значимости ,
6, Оцените полученные результаты, выводы оформите в аналитической записке,
Решение
Для решения задачи составим вспомогательную таблицу:
№ п/п
Запасы влаги в почве, мм
Бонитировочный балл
х
у
ху
х2
у2
1
144
75
10800
20736
5625
68,798
6,202
38,465
10,350
107,123
2
110
54
5940
12100
2916
63,256
-9,256
85,674
-23,650
559,323
3
110
61
6710
12100
3721
63,256
-2,256
5,090
-23,650
559,323
4
177
64
11328
31329
4096
74,177
-10,177
103,571
43,350
1879,223
5
186
72
13392
34596
5184
75,644
-3,644
13,279
52,350
2740,523
6
112
69
7728
12544
4761
63,582
5,418
29,355
-21,650
468,723
7
148
79
11692
21904
6241
69,45
9,55
91,202
14,350
205,923
8
151
73
11023
22801
5329
69,939
3,061
9,370
17,350
301,023
9
110
60
6600
12100
3600
63,256
-3,256
10,602
-23,650
559,323
10
151
72
10872
22801
5184
69,939
2,061
4,248
17,350
301,023
11
131
54
7074
17161
2916
66,679
-12,679
160,757
-2,650
7,023
12
113
77
8701
12769
5929
63,745
13,255
175,695
-20,650
426,423
13
110
57
6270
12100
3249
63,256
-6,256
39,138
-23,650
559,323
14
127
72
9144
16129
5184
66,027
5,973
35,677
-6,650
44,223
15
136
72
9792
18496
5184
67,494
4,506
20,304
2,350
5,522
16
136
67
9112
18496
4489
67,494
-0,494
0,244
2,350
5,522
17
144
72
10368
20736
5184
68,798
3,202
10,253
10,350
107,123
18
100
55
5500
10000
3025
61,626
-6,626
43,904
-33,650
1132,323
19
148
68
10064
21904
4624
69,45
-1,45
2,103
14,350
205,923
20
129
68
8772
16641
4624
66,353
1,647
2,713
-4,650
21,623
итого
2673
1341
180882
367443
91065
1342,22
-1,219
881,640
10,500
110,250
Средн, Знач
133,65
67,05
9044,1
18372,2
4553,25
509,827
57,548
22,579
7,586
1, Построение уравнения регрессии сводятся к оценке ее парамет-ров, Для оценки параметров регрессии, линейных по параметрам, используют метод наименьших квадратов (МНК), МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических минимальна т,е
Для линейных уравнений, решается следующая система уравнений:
Можно воспользоваться готовыми формулами, которые вытекают из этой системы:
Уравнение регрессии:
2,Рассчитаем линейный коэффициент парной корреляции:
Значение коэффициентов парной корреляции лежит в интервале от -1 до +1, его положительное значение свидетельствует о прямой связи, отрицательное — об обратной, т,е, когда растет одна переменная, другая уменьшается, Чем ближе значение к 1, тем теснее связь, Связь считается достаточно сильной, если коэффициент корреляции по абсолютной величине превышает 0,7, и слабой, если меньше 0,4, При равенстве его нулю связь полностью отсутствует, Это коэффициент дает объективную оценку тесноты связи лишь при линейной зависимости переменных,
Рассчитаем коэффициент детерминации, Он показывает долю вариации результативного признака, находящего под воздействием изучаемых факторов»