Учебная работа № /7840. «Контрольная Эконометрика, Контрольная работа №1

Учебная работа № /7840. «Контрольная Эконометрика, Контрольная работа №1

Количество страниц учебной работы: 11
Содержание:
Контрольная работа №1.
По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн.руб.) от объема капиталовложений (X, млн.руб.)
Требуется:
1) Построить поле корреляции и сформулировать гипотезу о форме связи.
2) Найти параметры уравнения линейной регрессии и дать ему экономическую интерпретацию.
3) Оценить тесноту связи с помощью показателей корреляции и детерминации.
4) Проверить значимость уравнения регрессии с помощью F-критерия Фишера (?=0,05) и с помощью средней относительной ошибки аппроксимации. Сделать вывод о качестве модели.
5) Проверить выполнимость предпосылок МНК.
6) Рассчитать параметры уравнений степенной и гиперболической регрессий. Дать интерпретацию уравнению степенной регрессии
7) Рассчитать индексы корреляции и детерминации.
8) Оценить значимость построенных моделей регрессий с помощью F-критерия Фишера и средней относительной ошибки аппроксимации. Сделать выводы.
9) С помощью сравнения основных характеристик выбрать лучшее уравнение регрессии и сделать вывод.
10) Осуществите прогнозирование среднего показателя Y при уровне значимости ?=0,05, если прогнозное значение фактора Х составит 80% от его максимального значения. Определите доверительный интервал прогноза.

Стоимость данной учебной работы: 585 руб.Учебная работа № /7840.  "Контрольная Эконометрика, Контрольная работа №1

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы


    Значительная корреляция между двумя случайными величинами всегда является свидетельством существования некоторой статистической связи в данной выборке, но эта связь не обязательно должна наблюдаться для другой выборки и иметь причинно-следственный характер, Часто заманчивая простота корреляционного исследования подталкивает исследователя делать ложные интуитивные выводы о наличии причинно-следственной связи между парами признаков, в то время как коэффициенты корреляции устанавливают лишь статистические взаимосвязи, Например, рассматривая пожары в конкретном городе, можно выявить весьма высокую корреляцию между ущербом, который нанёс пожар, и количеством пожарных, участвовавших в ликвидации пожара, причём эта корреляция будет положительной, Из этого, однако, не следует вывод «увеличение количества пожарных приводит к увеличению причинённого ущерба», и тем более не будет успешной попытка минимизировать ущерб от пожаров путём ликвидации пожарных бригад, В то же время, отсутствие корреляции между двумя величинами ещё не значит, что между ними нет никакой связи, Например, зависимость может иметь сложный нелинейный характер, который корреляция не выявляет,
    Некоторые виды коэффициентов корреляции могут быть положительными или отрицательными, В первом случае предполагается, что мы можем определить только наличие или отсутствие связи, а во втором — также и её направление, Если предполагается, что на значениях переменных задано отношение строгого порядка, то отрицательная корреляция — корреляция, при которой увеличение одной переменной связано с уменьшением другой, При этом коэффициент корреляции будет отрицательным, Положительная корреляция в таких условиях — это такая связь, при которой увеличение одной переменной связано с увеличением другой переменной, Возможна также ситуация отсутствия статистической взаимосвязи — например, для независимых случайных величин,
    Коэффициентом ковариации называется выражение:
    cov(X,Y)=M[(X-MX)(Y-MY)]=M[XY-XMY-YMX+MX*MY]=MXY-2MX*MY+MX*MY=MXY-MX*MY
    Если случайные величины XY независимы, то их коэффициент ковариации равен нулю, обратное в общем случае неверно,
    Математической мерой корреляции двух случайных величин служит корреляционное отношение либо коэффициент корреляции R, В случае если изменение одной случайной величины не ведёт к закономерному изменению другой случайной величины, но приводит к изменению другой статистической характеристики данной случайной величины, то подобная связь не считается корреляционной, хотя и является статистической, Впервые в научный оборот термин корреляция ввёл французский палеонтолог Жорж Кювье в XVIII веке, Он разработал «закон корреляции» частей и органов живых существ, с помощью которого можно восстановить облик ископаемого животного, имея в распоряжении лишь часть его останков, В статистике слово «корреляция» первым стал использовать английский биолог и статистик Фрэнсис Гальтон в конце XIX века,
    Коэффициентом корреляции случайных величин X и Y называется число:
    X*=(X-MX)/?x Y*=(Y-MY)/?y
    D(X±Y)=M[X±Y-M(X±Y)]2=M[X±Y-MX?MY]2=M[(X-MX)±(Y-MY)]2=M[(M-MX)2±2(X-MX)(Y-MY)+(Y-MY)2]=M(X_MX)2±2M(X-MX)(Y-MY)+M(Y-MY)2=DX±cov(XY)+DY
    Следствие:
    Если X и Y независимы, то коэффициент ковариации равен 0 и следовательно
    D(X±Y)=DX±DY
    Если имеются две выборки x=(x1,…, xI) и y=(y1,…, yI ), то можно рассчитать выборочные значения ковариации и корреляции, Ковариация c рассчитывается по формуле
    ,
    а коэффициент корреляции r по формуле
    ,
    В более общем случае, когда имеется матрица данных X, размерностью I наблюдений на J переменных, то выборочная матрица ковариаций CI между наблюдениями рассчитывается так —
    CI=XXt ,
    Выборочная матрица ковариаций CJ между переменными так —
    CJ=XtX ,
    Для вычисления парных ковариаций в Excel используют следующие стандартные функции: COVAR (КОВАР), CORREL (КОРРЕЛ),
    Синтаксис COVAR(x, y)
    Возвращает выборочную ковариацию между выборками x и y, CORREL(x, y)
    Возвращает выборочный коэффициент корреляции между выборками x и y,
    ковариация корреляция регрессия
    2, Практическая часть
    2,1 Задача 1, Построение модели парной регрессии
    1, Рассчитайте матрицу парных коэффициентов корреляции; оцените статистическую значимость коэффициентов корреляции,
    2″