Учебная работа № /7286. «Контрольная Теория вероятностей и математическая статистика, задачи (M=5 n=1)

Учебная работа № /7286. «Контрольная Теория вероятностей и математическая статистика, задачи (M=5 n=1)

Количество страниц учебной работы: 6
Содержание:
Формирование исходных данных к задачам
Условия задач, входящих в контрольную работу одинаковы для всех студентов, однако числовые данные задач зависят от личного шифра студента, выполняющего работу.
Для того, чтобы получить личные числовые данные, необходимо взять две последние цифры своего шифра (А – предпоследняя цифра, В – последняя) и выбрать из таблицы 1 параметр m, а из таблицы 2 параметр n. Эти два числа m и n и нужно подставить в условия задач контрольной работы.
Таблица 1 (выбор параметра m)
А 0 1 2 3 4 5 6 7 8 9
m 4 3 5 1 3 2 4 2 1 5
Таблица 2 (выбор параметра n)
В 0 1 2 3 4 5 6 7 8 9
n 3 2 1 4 5 3 1 5 2 4
Например, если шифр студента 22037, то А=3, В=7, и из таблиц находим, что m=1, n=5. Полученные m=1 и n=5 подставляются в условия всех задач контрольной работы этого студента.
1.Случайные события.
1.1. В ящике находятся 8 одинаковых пар перчаток черного цвета и 3 одинаковых пар перчаток бежевого цвета. Найти вероятность того, что две наудачу извлеченные перчатки образуют пару.
1.2. В урне находятся 3 шара белого цвета и 2 шара черного цвета. Шар наудачу извлекается и возвращается в урну три раза. Найти вероятность того, что среди извлеченных шаров окажется: а) ровно два белых шара; б) не менее двух белых шаров.
2. Случайные величины.
2.1. Закон распределения дискретной случайной величины ξ имеет вид:

xi -2 -1 0 5 6
pi 0.2 0.1 0.2 p4 p5
Найти вероятность p4, p5 и дисперсию Dξ, если математическое ожидание Мξ =2,1.
2.2. Плотность распределения непрерывной случайной величины ξ имеет вид:
f(x)=
Найти:
а) параметр а; b) функцию распределения F(x);
в) вероятность попадания случайной величины ξ в интервал (5,5; 7);
г) математическое ожидание Мξ и дисперсию Dξ.
Построить графики функций f(x) и F(x).
3. Математическая статистика.
3.1. Численная обработка данных одномерной выборки.
Выборка X объемом N=100 измерений задана таблицей:
xi 1 1,3 1,6 1,9 2,2 2,5 2,8
m
5 13 26 24 19 10 3
3.1.1. Построить полигон относительных частот Wi = m /N.
3.1.2. Вычислить среднее выборочное , выборочную дисперсию Dx и среднее квадратическое отклонение δx .
Список учебной литературы
1. П.Е.Данко, А.Г.Попов, Т.Я. Кожевникова. Высшая математика в упражнениях и задачах. – М.: Высшая школа, 2005. Том2.
2. В.Е.Гмурман. Курс теории вероятностей и математической статистики. – М.: Высшая школа, 1998.
3. В.Е.Гмурман. Руководство к решению задач теории вероятностей и математической статистике. – М.: Высшая школа, 2003.
4. Е.С.Вентцель. Прикладные задачи теории вероятностей. – М.: Наука, 2007.

Стоимость данной учебной работы: 585 руб.Учебная работа № /7286.  "Контрольная Теория вероятностей и математическая статистика, задачи (M=5 n=1)

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы


    Вероятности промахов равны соответственно: q1 = 0,1, q2 = 0,2, q3 = 0,3,
    а) Р(А) = р1р2р3 = 0,9•0,8•0,7 = 0,504,
    б) Р(В) = p1q2q3 + q1p2q3 + q1q2p3 = 0,9•0,2•0,3 + 0,1•0,8•0,3 + 0,1•0,2•0,7 = 0,092,
    в) Событие — все три стрелка промахиваются, Тогда
    Р(С) = 1 — Р() = 1 — 0,1•0,2•0,3 = 1 — 0,006 = 0,994,
    № 11
    Вероятность наступления события в каждом из одинаковых независимых испытаний равна 0,02, Найти вероятность того, что в 150 испытаниях событие наступит ровно 5 раз
    У нас n достаточно велику, р малу, л = np = 150 • 0,02 = 3 < 9, k = 5, Справедливо равенство Пуассона: , Таким образом, № 21 По данному закону распределения дискретной случайной величины Х определить математическое ожидание М(Х), дисперсию D(X) и среднее квадратическое отклонение у(Х), хі 1 2 3 4 5 рі 0,05 0,18 0,23 0,41 0,13 Последовательно получаем: 5 М(Х) = ? хірі = 0,05 + 2•0,18 + 3•0,23 + 4•0,41 + 5•0,13 = 3,39, i=1 5 D(X) = ? xiІpi - MІ = 0,05 + 2І•0,18 + 3І•0,23 + 4І•0,41 + 5І•0,13 - 3,39І = i=1 1,1579, у(Х) = vD(X) = v1,1579 = 1,076, № 31 Случайная величина Х задана интегральной функцией а) дифференциальную функцию f(x) (плотность вероятности); б) математическое ожидание и дисперсию величины х; в) вероятность того, что X примет значение, принадлежащее интервалу ; г) построить графики функций F(x) и f(x), Последовательно получаем: а) ; в) Р(a < x < b) = F(b) - F(a) P= F(1) - F= - 0 = , Графики функций поданы далее, № 41 Определить вероятность того, что нормально распределённая величина Х примет значение, принадлежащее интервалу (б; в) если известны математическое ожидание а и среднее квадратическое отклонение у, Данные: б = 2; в = 13; а = 10; у = 4, Используем формулу Р(б < x < в) = Имеем: Р(2 < x < 13) == Ф- Ф(-2), Поскольку функция Лапласа есть нечетная, можем записать: Ф- Ф(-2) = Ф+ Ф(2) = 0,2734 + 0,4772 = 0,7506, № 51 По данному статистическому распределению выборки хі 4 5,8 7,6 9,4 11,2 13 14,8 16,6 mі 5 8 12 25 30 20 18 6 Определить: а) выборочную среднюю; б) выборочную дисперсию; в) выборочное среднее квадратическое отклонение, Для решения задачи введём условную переменную , где С - одно из значений хі, как правило, соответствующее наибольшему значению mі , а h - это шаг (у нас h = 1,8), Пусть С = 11,2, Тогда , Заполним таблицу: xi mi xiґ ximi (xiґ)Іmi 4 5 - 4 - 20 80 5,8 8 - 3 - 24 72 7,6 12 - 2 - 24 48 9,4 25 - 1 - 25 25 11,2 30 0 0 0 13 20 1 20 20 14,8 18 2 36 72 16,6 6 3 18 54 ? = 124 ? = - 19 ? = 371 Используя таблицу, найдём ; D(xґ) = ?(xiґ)Іmi - (xiґ)І = - (- 0,1532)І = 2,9685, Теперь перейдем к фактическим значениям х и D(x): _ x = xґh + C = - 0,1532•1,8 + 11,2 = 10,9242; D(x) = D(xґ)•hІ = 2,9685•1,8І = 9,6178; у(x) = vD(x) = v9,6178 = 3,1013, № 61 По данной корреляционной таблице найти выборочное уравнение регрессии, у х 6 9 12 15 18 21 ny 5 4 2 6 15 5 23 28 25 18 44 5 67 35 1 8 4 13 45 4 2 6 nx 4 7 42 52 13 2 n = 120 Для упрощения расчетов введем условные переменные u = , v = , Составим таблицу: v u - 3 - 2 - 1 0 1 2 nv nuvuv - 2 4 6 2 4 6 32 - 1 5 2 23 1 28 33 0 18 0 44 0 5 0 67 0 1 1 -1 8 0 4 1 13 3 2 4 2 2 4 6 16 nu 4 7 42 52 13 2 n = 120 ? = 84 Последовательно получаем: ; ; ; ; уuІ = - (u)І = 1,058 - (- 0,425)І = 0,878; уu = v0,878 = 0,937; уvІ = - (v)І = 0,742 - (- 0,125)І = 0,726; уv = v0,726 = 0,8521; По таблице, приведённой выше, получаем ?nuvuv = 84, Находим выборочный коэффициент корреляции: Далее последовательно находим: x = u•h1 + C1 = - 0,425•3 + 15 = 13,725; y = v•h2 + C2 = - 0,125•10 + 25 = 23,75; уx = уu•h1 = 0,937•3 = 2,811; уy = уv•h2 = 0,8521•10 = 8,521, Уравнение регрессии в общем виде: Таким образом, упрощая, окончательно получим искомое уравнение регрессии: Необходимо произвести проверку полученного уравнения регрессии при, по крайней мере, двух значениях х, 1) при х = 12 по таблице имеем по уравнению: ух=12 = 2,457•12 - 9,968 = 19,516; е1 = 19,762 - 19,516 = 0,246; 2) при х = 18 по таблице имеем по уравнению: ух=18 = 2,457•18 - 9,968 = 34,258; е2 = 34,258 - 34,231 = 0,027"