Учебная работа № /7242. «Контрольная Эконометрика, вариант 9 — контрольная
Учебная работа № /7242. «Контрольная Эконометрика, вариант 9 — контрольная
Содержание:
Вариант 9
m-9 n-4
№ 1
Задача межотраслевого баланса. Три отрасли промышленности I, II и III являются производителями и в то же время потребителями некоторой продукции.
Отрасль Потребление Конечный продукт Валовой выпуск
I II III
Производство I 180 40 160 240
II 100 275 40 85
III 120 250 135 300
№ 2
Вычислить предел функции:
а) ; б) ; в) .
№ 3
Вычислить маржинальную долю (квоту) потребления при совокупном общественном продукте Е=55 (ден.ед. на ед.выручки), если функция потребления задана в виде: С(Е)= (в ден.ед. на единицу выручки).
№ 4
Исследовать функцию и построить ее график.
№ 5
Вычислить неопределённые интегралы:
а) ; б) .
№ 6
Найти все частные производные первого и второго порядка для функции двух переменных:
.
№ 7
Найти общее решение дифференциального уравнения и построить графики двух различных частных решений этого уравнения:
.
№ 8
Найти частное решение дифференциального уравнения, удовлетворяющее указанному условию:
, .
№ 9
Исследовать ряд на сходимость:
(В данной задаче необходимо заменить только М последней цифрой шифра студента в зачетной книжке).
№ 10
Найти радиус и интервал сходимости степенного ряда:
.
Выдержка из похожей работы
Владивосток 2012
Задача №1,
По семи территориям Уральского района, За 199Х г, известны значения двух признаков (табл, 1,),
Таблица 1
Район
Расходы на покупку продовольственных товаров в общих расходах, %, у
Среднедневная заработная плата одного работающего, руб,, х
Удмуртская респ,
69,8
44,1
Свердловская обл,
63
58
Башкортостан
60,9
55,7
Челябинская обл,
57,7
60,8
Пермская обл,
56
57,8
Курганская обл,
55,8
46,2
Оренбургская обл,
50,3
53,7
Требуется:
1, Для характеристики зависимости у от х рассчитать параметры следующих функций:
а) линейной;
б) степенной;
в) показательной; 1
г) равносторонней гиперболы (также нужно придумать как предварительно линеаризовать данную модель),
2, Оценить каждую модель через среднюю ошибку аппроксимации и F-критерий Фишера,
Решение задачи
1а, Для расчета параметров a и b линейной регрессии y=a+b*x, Решаем систему нормальных уравнений относительно a и b:
По исходным данным рассчитываем
Таблица 1,2
y
x
yx
x2
y2
Ai
1
69,8
44,1
3078,18
1944,81
4872,04
62,411
7,4
10,6
2
62,7
58
3636,6
3364
3931,29
57,546
5,2
8,3
3
60,9
55,7
3392,13
3102,49
3708,81
58,551
2,5
4,1
4
57,7
60,8
3508,16
3696,64
3329,29
56,566
1,1
1,9
5
56
57,8
3236,8
3340,84
3136
57,616
-1,6
2,9
6
55,8
46,2
2577,96
2134,44
3113,64
61,676
-5,9
10,6
7
50,3
53,7
2701,11
2883,69
2530,09
89,051
-8,8
17,4
итого
413,2
376,3
22130,94
20466,91
24621,16
—
—
55,8
Среднее значение
59,03
53,76
3161,56
2923,84
3517,31
—
7,97
5,72
5,81
2
32,77
33,70
; ;
;
;
b=
=59,03- (-0, 35)53,76=77,846
Уравнение регрессии: =77,846-0,35x, С увеличением среднедневной заработной платы на 1 руб, доля расходов на покупку продовольственных товаров снижается в среднем на 0,35%-ых пункта, Рассчитаем линейный коэффициент п��рной корреляции:
= =-0,357
Связь умеренно обратная,
Определим коэффициент детерминации:
2 =(-0,35)2 =0,127
Вариация результата на 12,7% объясняется вариацией фактора x, Подставляя в уравнение регрессии фактические значения x, определим теоретические(расчетные) значения , Найдем величину средней ошибки аппроксимации :
= = %
В среднем расчетные значения отклоняются от фактических на 7,97%
Рассчитаем F- критерий
F=
Полученное значение указывает на необходимость принять гипотезу H0 о случайной природе зависимости и статистической незначимости параметров уравнения и показателя тесноты связи,
1б, Построению степенной модели y= xb предшествует процедура линеаризации переменных,
В примере линеаризация производится путем логарифмирования обеих частей уравнения:
log y=log+b log x
Y=C+b X,
Где Y=log y, X=log x, C=log
Для расчетов используем данные таблицы 1″