Учебная работа № /7172. «Контрольная Математика, 3 задания 32

Учебная работа № /7172. «Контрольная Математика, 3 задания 32

Количество страниц учебной работы: 5
Содержание:
Найдите условные экстремумы функций в задачах
3.14 при условиях
3.16 при условиях
В школе проводится конкурс на лучшую стенгазету.
Требуется купить акварельной краски по цене 30 д.е. за коробку, цветные карандаши по цене 20 д.е. за коробку, линейки по цене 12 д.е., блокноты по цене 10 д.е. Красок нужно купить не менее трех коробок, блокнотов – столько, сколько коробок карандашей и красок вместе, линеек не более пяти. На покупку выделяется не менее 300 д.е. В каком количестве требуется купить указанные предметы, чтобы общее число предметов было наибольшим?

Стоимость данной учебной работы: 585 руб.Учебная работа № /7172.  "Контрольная Математика, 3 задания 32

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы


    гр,94381
    Минск 2009
    1, Задание 1
    Построить ЭММ равновесия для задачи о поиске лучших вариантов использования ресурсов при заданных затратах и ценах,
    Задача, Предприятие ежемесячно имеет ресурсы трех типов Р1, P2, P3, объемы которых определяются величинами 2600, 1800, 500, Из этих ресурсов предприятие может организовать производство четырех видов изделий П1 П2, П3, П4, причем продукция может производиться в любых соотношениях (сбыт обеспечен), Расход i-го ресурса на производство единицы j-го изделия равен aij, прибыль от реализации единицы j-го изделия равна cj,
    Выполнить эконометрический анализ полученной модели:
    1) привести полученную задачу линейного программирования к каноническому виду, Объяснить смысл введенных балансовых переменных;
    2) найти оптимальный ассортиментный план производства, при котором расход ресурсов не превысит имеющегося количества, а суммарная прибыль будет максимальной, Дать экономическую интерпретацию полученного результата;
    3) составить двойственную задачу для исходной, Определить, при каких ценах на ресурсы их продажа будет не менее выгодна, чем продажа готовой продукции, вошедшей в оптимальный план;
    4) определить дефицитность сырья и увеличение прибыли при изменении его объема на единицу;
    5) оценить целесообразность введения в план производства нового вида изделия П5, если норма затрат i-го ресурса на производство единицы новой продукции равна ai5, а прибыль от реализации единицы продукции равна 6,
    Исходные данные:
    c1 = 2; c2 = 4; c3 = 1; c4 = 2;
    a15 = 1; a25 = 3; a35 = 1,
    Решение
    Обозначим через х1, х2, х3, х4 — количество единиц продукции соответственно П1, П2, П3, П4, планируемой к выпуску, а через f — величину прибыли от реализации этой продукции, Тогда, учитывая значения прибыли от единицы продукции П1, П2, П3, П4 соответственно, суммарная величина прибыли — целевая функция — запишется в следующем виде:
    f = 2х1, + 4х2 + х3 + 2х4 (max), (5,1)
    Переменные х1, х2, х3, х4 должны удовлетворять ограничениям, накладываемым на расход имеющихся в распоряжении предприятия ресурсов,
    (5,2)
    По смыслу задачи:
    xj ? 0; (j = (5,3)
    Соотношения (5,1)-(5-3) образуют экономико-математическую модель задачи, Математически задача сводится к нахождению числовых значений х1*, х2*, х3*, х4*, удовлетворяющих линейным неравенствам (5,2) и (5,3) и доставляющих максимум линейной функции (5,1),
    1) Приведем модель к канонической форме: запишем ограничения задачи в виде равенств, Для этого введем в левые части неравенств дополнительные неотрицательные переменные х5, х6, х7, обозначающие разности между правыми и левыми частями этих неравенств (возможные остатки ресурсов):
    f = 2х1, + 4х2 + х3 + 2х4 (max)
    (5,4)
    xj ? 0; (j =
    В модели (5,4) переменные х5, х6, х7 являются базисными, а переменные х1, х2, х3, х4 — свободными,
    2) Найдем оптимальный ассортиментный план производства, при котором расход ресурсов не превысит имеющегося количества, а суммарная прибыль будет максимальной,
    Составим первую симплекс-таблицу (табл, 5″