Учебная работа № /7094. «Контрольная Эконометрика, вариант 2 53

Учебная работа № /7094. «Контрольная Эконометрика, вариант 2 53

Количество страниц учебной работы: 8
Содержание:
«КОНТРОЛЬНАЯ РАБОТА № 1

Данные представлены таблицей значений независимой переменной X и зависимой переменной Y.
Задание
1. Вычислить коэффициент корреляции и сделать вывод о тесноте и направлении связи.
2. На уровне значимости = 0,05 проверить гипотезу о значимости коэффициента корреляции.
3. Составить уравнение парной регрессии Y = b0 + b1X.
4. Нанести данные на чертеж и изобразить прямую регрессии.
5. С помощью коэффициента детерминации R2 оценить качество построенной модели.
6. Оценить значимость уравнения регрессии с помощью дисперсионного анализа.
7. При уровне значимости  = 0,05 построить доверительные интервалы для оценки параметров регрессии β1, β0, и сделать вывод об их значимости.
8. При уровне значимости  = 0,05 получить доверительные интервалы для оценки среднего и индивидуального значений зависимой переменной Y, если значение объясняющей переменной X принять равным х*.
Таблица 1 – исходные данные
2 x 76 87 99 91 84 90 98 106 99 91
y 54 61 66 60 53 59 67 74 69 62

»

Стоимость данной учебной работы: 585 руб.Учебная работа № /7094.  "Контрольная Эконометрика, вариант 2 53

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы

    Шевченко
    кафедра прикладной математики и экономико-математических методов
    Контрольная работа
    по эконометрике
    Тирасполь, 2010
    Задание 1
    По приведенным данным требуется:
    Построить модель парной регрессии y от x:

    Номер района

    Средние выплаты социального характера на одного неработающего
    тыс, руб,, y

    Прожиточный минимум в среднем на душу населения,
    тыс, руб,,x

    1

    1077

    481,5

    2

    1246

    539,5

    3

    906

    422,5

    4

    610

    376,5

    5

    838

    396,5

    6

    335

    316,5

    7

    1470

    652,5

    8

    450

    343,5

    9

    1399

    586,5

    10

    1213

    755,5

    11

    1304

    502,5

    12

    1343

    713,5

    13

    1279

    746,5

    14

    510

    326,5

    15

    1163

    762,5

    Серия Г: линейную и параболическую (),
    Значение параметра с найдите подбором, используя пакет Еxcel, Критерий эффективности — наименьшее значение средней по модулю ошибки аппроксимации,
    Рассчитать индекс парной корреляции (для линейной модели — коэффициент корреляции), коэффициент детерминации и среднюю по модулю ошибку аппроксимации,
    Оценить каждую модель, применив критерий Фишера,
    Линейную модель оценить с помощью t-критерия Стьюдента, найти доверительные интервалы для коэффициентов регрессии и корреляции (доверительная вероятность 0,95),
    Рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 30% от его среднего уровня, Для линейной модели с вероятностью 0,95 построить доверительный интервал для прогнозного значения результата,
    Составить сводную таблицу результатов вычислений, выбрать лучшую модель, дать интерпретацию рассчитанных характеристик,
    Результаты расчетов отобразить на графиках,
    Построим линейную модель парной регрессии у = а * х + b, вспомогательные расчеты проводим в таблице (стр, 8)
    Найдём средние значения прожиточного минимуму х и соц, выплат у:
    ;,
    Затем для каждого i-го года вычислим отклонения: и , , а затем перемножим эти отклонения и найдём среднее арифметическое полученной величины, т,е, определим выборочную ковариацию
    Коэффициенты регрессии, находим по формулам:
    ,
    ,
    Таким образом, искомое уравнение регрессии примет вид:
    y = 1,876099 * x + 18,640196
    Коэффициент при х положительный: т,е, с ростом прожиточного минимума на душу населения растут средние выплаты социального характера на одного неработающего на 1,88 тыс, руб,,, т,е, корреляция положительная,
    Рассчитаем линейный коэффициент парной корреляции:
    Между прожиточным уровнем в среднем на душу населения и выплатами на одного неработающего существует тесная линейная зависимость,
    Коэффициент детерминации:
    67,9% детерминации социальных выплат на одного неработающего определяется вариацией прожиточного минимума,
    Средняя по модулю ошибка аппроксимации:

    Рассчитаем фактическое значение критерия Фишера:
    Для уровня значимости б = 0,05 и числа степеней свободы к1= m =1; к2=n-m-1=13, по таблице находим критическое (максимальное) значение Фишера: Fтабл = 4, 67″