Учебная работа № /7084. «Контрольная Эконометрика, 2 задания 17
Учебная работа № /7084. «Контрольная Эконометрика, 2 задания 17
Содержание:
«Оглавление
Задание 1 3
Задание 2 6
Список использованных источников 14
Задание 1
Имеются следующие данные об уровне механизации работ X (%) и производительности труда Y (т/ч) для однотипных предприятий:
х 12 10 11 9 9 8 8 7
у 8 9 10 7 8 6 5 5
Необходимо: а) оценить тесноту и направление связи между переменными с помощью коэффициента корреляции; б) найти уравнение регрессии по , в) оценить среднюю производительность труда на предприятиях с уровнем механизации работ 60% и построить для нее 95%-ный доверительный интервал; г) аналогичный доверительный интервал найти для индивидуальных значений производительности труда на тех же предприятиях.
Задание 2
Имеются следующие данные о выработке литья на одного работающего Х1 (T), браке литья Х2 (%) и себестоимости 1 т литья Y (руб.) по литейным цехам заводов:
х1 6 7 12 9 8 8 7 7
х2 12 10 11 9 9 8 8 7
у 8 9 10 7 8 6 5 5
Необходимо: а)найти уравнение множественной регрессии Y по X1 и X2, б) оценить значимость этого уравнения и его коэффициентов на уровне α=0,05; в) сравнить раздельное влияние на зависимую переменную каждой из объясняющих переменных, используя стандартизованные коэффициенты регрессии и коэффициенты эластичности; г) найти 95%-ные доверительные интервалы для коэффициентов регрессии, а также для среднего и индивидуальных значений себестоимости 1 т литья в цехах, в которых выработка литья на одного работающего составляет 40 т, а брак литья – 5%.
Список использованных источников
1. Ежова Л.Н. Основы эконометрики. Учебное пособие. Иркутск, 2010. – 395 с.
2. Кремер Н.Ш. Эконометрика. / Н.Ш. Кремер, Б.А.Путко. — М., ЮНИТИ, 2011. – 456 с.
3. Катышев П.К. Сборник задач к начальному курсу эконометрики / П.К. Катышев, А.А. Пересецкий – М.: Дело, 2009. – 72 с.
4. Магнус Я.Р. Эконометрика. Начальный курс / Я.Р. Магнус, П.К. Катышев, А.А. Пересецкий – М.: Дело, 2010. – 400 с.
5. Практикум по эконометрике: учеб. пособие / под ред. И. И. Елисеевой. – М.: Финансы и статистика, 2011. – 192 с.
6. Эконометрика: учебное пособие / под ред. И. И. Елисеевой. – М.: Финансы и статистика, 2011. – 245 с.
»
Выдержка из похожей работы
Модель: Y = (2/X) + 5; X = 0;
3, Убыточность выращивания овощей в сельскохозяйственных предприятиях и уровни факторов (сбор овощей с 1 га, ц и затраты труда, человеко-часов на 1 ц), ее формирующих, характеризуются следующими данными за год:
№ района
Фактор
Уровень убыточности, %
Сбор овощей с 1 га, ц
Затраты труда, человеко-часов на 1 ц
1
93,2
2,3
8,8
2
65,9
26,8
39,4
3
44,6
22,8
26,2
4
18,7
56,6
78,8
5
64,6
16,4
34
6
25,6
26,5
47,6
7
47,2
26
43,7
8
48,2
12,4
23,6
9
64,1
10
19,9
10
30,3
41,7
50
11
28,4
47,9
63,1
12
47,8
32,4
44,2
13
101,3
20,2
11,2
14
31,4
39,6
52,8
15
67,6
18,4
20,2
Нелинейную зависимость принять
1, Метод наименьших квадратов для однофакторной линейной регрессии
Линейная регрессия находит широкое применение в эконометрике в виде четкой эконометрической интерпретации ее параметров, Линейная регрессия сводится к нахождению уравнения вида:
Y = а + bx или Y = a + bx + ?;
Уравнение вида Y = а + bx позволяет по заданным значениям фактора x иметь теоретические значения результативного признака, подставляя в него фактические значения фактора X, На графике теоретические значения представляют линию регрессии,
Рисунок 1 — Графическая оценка параметров линейной регрессии
Построение линейной регрессии сводится к оценке ее параметров — а и b, Оценки параметров линейной регрессии могут быть найдены разными методами, Можно обратится к полю корреляции и, выбрав на графике две точки, провести через них прямую линию, Далее по графику можно определить значения параметров, Параметр a определим как точку пересечения линии регрессии с осью OY, а параметр b оценим, исходя из угла наклона линии регрессии, как dy/dx, где dy — приращение результата y, а dx — приращение фактора x, т,е, Y = а + bx,
Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов(МНК),
МНК позволяет получить такие оценки параметров a и b, при которых сумма квадратов отклонений фактических значений результативного признака (y) от расчетных (теоретических) минимальна:
?(Yi — Y xi)2 > min
Иными словами, из всего множества линий линия регрессии на графике выбирается так, чтобы сумма квадратов расстояний по вертикали между точками и этой линией была бы минимальной,
?i = Yi — Y xi,
следовательно ??i2 > min
Рисунок 2 — Линия регрессии с минимальной дисперсией остатков
Чтобы найти минимум функции, надо вычислить частные производные по каждому из параметров a и b и приравнять их к нулю,
Обозначим ??i2 через S, тогда
S = ? (Y -Y xi)2 =?(Y-a-bx)2;
Дифференцируем данное выражение, решаем систему нормальных уравнений, получаем следующую формулу расчета оценки параметра b:
b = (ух — у*x)/(x2-x2),
Параметр b называется коэффициентом регрессии, Его величина показывает среднее изменение результата с изменением фактора на одну единицу, Например, если в функции издержек Y = 3000 + 2x (где x — количество единиц продукции, у — издержки, тыс, грн,) с увеличением объема продукции на 1 ед, издержки производства возрастают в среднем на 2 тыс, грн,, т,е, дополнительный прирост продукции на ед, потребует увеличения затрат в среднем на 2 тыс, грн,
Возможность четкой экономической интерпретации коэффициента регрессии сделала линейное уравнение регрессии достаточно распространенным в эконометрических исследованиях,
2″