Учебная работа № /7082. «Контрольная Эконометрика, 2 задания 15
Учебная работа № /7082. «Контрольная Эконометрика, 2 задания 15
Содержание:
«Оглавление
Задание 1 3
Задание 2 8
Список использованных источников 16
Задание 1
В табл. представлены данные по группе хозяйств, характеризующие связь между выходом продукции с 1 га угодий (х, млн руб.) и основными средствами, приходящимися на 1 га (у, тыс. ц):
х 140 187 191 197 202 246 253 262 276 289
у 128 141 136 183 164 201 192 176 195 221
1) Найти линейный коэффициент корреляции. Сделать вывод.
2) Найти коэффициент детерминации. Сделать вывод.
3) Найти МНК-оценки параметров уравнения парной линейной регрессии вида . Пояснить экономический смысл полученных результатов.
4) Проверить значимость коэффициента корреляции (детерминации) при уровне значимости 0,05. Сделать вывод.
5) Проверить значимость оценок параметров уравнения регрессии при уровне значимости 0,05. Сделать вывод.
6) Найти доверительные интервалы для параметров уравнения регрессии при доверительной вероятности 0,95. Пояснить смысл полученных результатов.
Задание 2
В таблице представлены результаты наблюдений за х1, х2 и у:
х1 3 2,3 2,6 4,3 2,9 2,4 5,1 3,4 2 4,5 5,1 4,2
х2 2,6 2,6 2,5 2,5 2,8 3,1 1,6 2 2,9 2,9 2,7 3
у 47 49 48 55 49 52 58 57 50 53 58 56
1) Найти МНК-оценки параметров уравнения множественной линейной регрессии вида . Пояснить смысл полученных результатов.
2) Проверить значимость оценок параметров уравнения регрессии при уровне значимости 0,05. Сделать выводы.
3) Найти доверительные интервалы для параметров уравнения регрессии при доверительной вероятности 0,95. Пояснить смысл полученных результатов.
4) Найти коэффициент детерминации. Сделать вывод.
5) Проверить значимость уравнения регрессии и коэффициента детерминации при уровне значимости 0,05. Сделать вывод.
6) Проверить наличие гетероскедастичности с помощью теста ранговой корреляции Спирмена.
7) Определить наличие автокорреляции с помощью критерия Дарбина-Уотсона.
Список использованных источников
1. Ежова Л.Н. Основы эконометрики. Учебное пособие. Иркутск, 2010. – 395 с.
2. Кремер Н.Ш. Эконометрика. / Н.Ш. Кремер, Б.А.Путко. — М., ЮНИТИ, 2011. – 456 с.
3. Катышев П.К. Сборник задач к начальному курсу эконометрики / П.К. Катышев, А.А. Пересецкий – М.: Дело, 2009. – 72 с.
4. Магнус Я.Р. Эконометрика. Начальный курс / Я.Р. Магнус, П.К. Катышев, А.А. Пересецкий – М.: Дело, 2010. – 400 с.
5. Практикум по эконометрике: учеб. пособие / под ред. И. И. Елисеевой. – М.: Финансы и статистика, 2011. – 192 с.
6. Эконометрика: учебное пособие / под ред. И. И. Елисеевой. – М.: Финансы и статистика, 2011. – 245 с.
»
Выдержка из похожей работы
Модель: Y = (2/X) + 5; X = 0;
3, Убыточность выращивания овощей в сельскохозяйственных предприятиях и уровни факторов (сбор овощей с 1 га, ц и затраты труда, человеко-часов на 1 ц), ее формирующих, характеризуются следующими данными за год:
№ района
Фактор
Уровень убыточности, %
Сбор овощей с 1 га, ц
Затраты труда, человеко-часов на 1 ц
1
93,2
2,3
8,8
2
65,9
26,8
39,4
3
44,6
22,8
26,2
4
18,7
56,6
78,8
5
64,6
16,4
34
6
25,6
26,5
47,6
7
47,2
26
43,7
8
48,2
12,4
23,6
9
64,1
10
19,9
10
30,3
41,7
50
11
28,4
47,9
63,1
12
47,8
32,4
44,2
13
101,3
20,2
11,2
14
31,4
39,6
52,8
15
67,6
18,4
20,2
Нелинейную зависимость принять
1, Метод наименьших квадратов для однофакторной линейной регрессии
Линейная регрессия находит широкое применение в эконометрике в виде четкой эконометрической интерпретации ее параметров, Линейная регрессия сводится к нахождению уравнения вида:
Y = а + bx или Y = a + bx + ?;
Уравнение вида Y = а + bx позволяет по заданным значениям фактора x иметь теоретические значения результативного признака, подставляя в него фактические значения фактора X, На графике теоретические значения представляют линию регрессии,
Рисунок 1 — Графическая оценка параметров линейной регрессии
Построение линейной регрессии сводится к оценке ее параметров — а и b, Оценки параметров линейной регрессии могут быть найдены разными методами, Можно обратится к полю корреляции и, выбрав на графике две точки, провести через них прямую линию, Далее по графику можно определить значения параметров, Параметр a определим как точку пересечения линии регрессии с осью OY, а параметр b оценим, исходя из угла наклона линии регрессии, как dy/dx, где dy — приращение результата y, а dx — приращение фактора x, т,е, Y = а + bx,
Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов(МНК),
МНК позволяет получить такие оценки параметров a и b, при которых сумма квадратов отклонений фактических значений результативного признака (y) от расчетных (теоретических) минимальна:
?(Yi — Y xi)2 > min
Иными словами, из всего множества линий линия регрессии на графике выбирается так, чтобы сумма квадратов расстояний по вертикали между точками и этой линией была бы минимальной,
?i = Yi — Y xi,
следовательно ??i2 > min
Рисунок 2 — Линия регрессии с минимальной дисперсией остатков
Чтобы найти минимум функции, надо вычислить частные производные по каждому из параметров a и b и приравнять их к нулю,
Обозначим ??i2 через S, тогда
S = ? (Y -Y xi)2 =?(Y-a-bx)2;
Дифференцируем данное выражение, решаем систему нормальных уравнений, получаем следующую формулу расчета оценки параметра b:
b = (ух — у*x)/(x2-x2),
Параметр b называется коэффициентом регрессии, Его величина показывает среднее изменение результата с изменением фактора на одну единицу, Например, если в функции издержек Y = 3000 + 2x (где x — количество единиц продукции, у — издержки, тыс, грн,) с увеличением объема продукции на 1 ед, издержки производства возрастают в среднем на 2 тыс, грн,, т,е, дополнительный прирост продукции на ед, потребует увеличения затрат в среднем на 2 тыс, грн,
Возможность четкой экономической интерпретации коэффициента регрессии сделала линейное уравнение регрессии достаточно распространенным в эконометрических исследованиях,
2″