Учебная работа № 6815. «Контрольная методы оптимальных решений вариант 4
Учебная работа № 6815. «Контрольная методы оптимальных решений вариант 4
Содержание:
«Для данной задачи линейного программирования:
1. построить ее математическую модель;
2. решить ее геометрическим методом;
3. решить ее симплекс-методом;
4. построить задачу, двойственную к данной и найти её решение;
5. дать экономическую интерпретацию полученным ответам.
Для изготовления трех видов изделий А, В используется токарное, фрезерное, сварочное и шлифовальное оборудование. Затраты времени на обработку одного изделия для каждого из типов оборудования; фонд рабочего времени; прибыль от реализации одного изделия каждого вида даны в таблице. Определить план выпуска изделий, обеспечивающий их максимальную суммарную прибыль.
»
Форма заказа готовой работы
Выдержка из похожей работы
,А3находится однородный
груз в количествеа1,а2,а3, Этот груз необходимо
развести пяти потребителямB1,B2,B3,B4,B5,
потребности которых в данном грузе
составляютb1,b2,b3,b4,b5соответственно,
Стоимость перевозок пропорциональна
расстоянию и количеству перевозимого
груза, Матрица тарифовcij
(тыс,руб,/т,) и значенияа1,а2 ,а3;b1,b2,b3,b4,b5приведены ниже:
а1 = 200т;
а2 = 250т;
а3 = 250т;
b1 = 80т;
b2 = 260т;
b3 = 100т;
b4 = 140т;b5
= 120т;
Требуется спланировать
для транспортной задачи (ТЗ)
первоначальные планы перевозокxijдвумя способами (метод северо-западного
угла, метод минимальной стоимости) и
определить для полученных планов
значения целевой функции,
4, Методом потенциалов
провести 2 шага улучшения первоначального
плана ТЗ
из задания 3, полученного по методу
«северо-западного» угла, Записать
полученное решение и вычислить для
него значение целевой функции,Контрольная работа по методам оптимальных решений Вариант 2,
1, Построить допустимую область для
заданной системы линейных неравенств
и найти координаты угловых вершин
полученной области
2, Найти графическим способом наибольшее
и наименьшее значение целевой функции
zпри заданных условиях
z=-2x+y
max (min)
при условии
( y-x
1, y+x
3, y
1, x
3)
3, На трёх базах А1,А2
,А3находится однородный
груз в количествеа1,а2,а3, Этот груз необходимо
развести пяти потребителямB1,B2,B3,B4,B5,
потребности которых в данном грузе
составляютb1,b2,b3,b4,b5соответственно,
Стоимость перевозок пропорциональна
расстоянию и количеству перевозимого
груза, Матрица тарифовcij
(тыс,руб,/т