Учебная работа № 6780. «Контрольная ТВИМС 3
Учебная работа № 6780. «Контрольная ТВИМС 3
Содержание:
«Задача 3.
На почту поступило 8000 писем. Вероятность того, что на случайно взятом конверте отсутствует почтовый индекс, равна 0,0005.
Найти вероятность того, что почтовый индекс отсутствует:
а) на трех конвертах;
б) не менее чем на трех конвертах.
Задача 5.
Плотность вероятности нормально распределенной случайной величины Х имеет вид:
Найти:
а) математическое ожидание и среднее квадратическое отклонение случайной величины Х;
б) вероятность P(-1 ≤ Х ≤ 0);
в) вероятность того, что отклонение случайной величины Х от ее математического ожидания не превысит 2,5 (по абсолютной величине).
Контрольная работа № 4
Задача 1.
Имеются выборочные данные о распределении вкладчиков по размеру вклада в Сбербанке города.
Размер вклада, тыс. руб. До 40 40 — 60 60 — 80 80 — 100 Свыше 100 Итого:
Число вкладов 32 56 92 120 100 400
Найти:
а) вероятность того, что средний размер вклада в Сбербанке отличается от среднего размера вклада в выборке не более чем на 5 тыс. руб. (по абсолютной величине);
б) границы, в которых с вероятностью 0,95 заключена доля вкладов, размер которых менее 60 тыс. руб.;
в) объем повторной выборки, при которой те же границы для доли вкладов (см. п. б) можно гарантировать с вероятностью 0,9876; дать ответ на тот же вопрос, если никаких предварительных данных о рассматриваемой доле нет.
Задача 2.
По данным задачи 1, используя -критерий Пирсона, на уровне значимости a = 0,05 проверить гипотезу о том, что случайная величина X – размер вклада в Сбербанке – распределена по нормальному закону.
Построить на одном чертеже гистограмму эмпирического распределения и соответствующую нормальную кривую.
Задача 3.
Распределение 110 предприятий по стоимости основных производственных фондов X (млн. руб.) и стоимости произведенной продукции Y (млн. руб.) представлены в таблице:
у
х 15 — 25 25 — 35 35 — 45 45 — 55 55 — 65 65 — 75 Итого:
5 – 15 17 4 21
15 – 25 3 18 3 24
25 – 35 2 15 5 22
35 – 45 3 13 7 23
45 – 55 6 14 20
Итого: 20 24 21 18 13 14 110
Необходимо:
1) вычислить групповые средние и построить эмпирические линии регрессии;
2) предполагая, что между переменными X и Y существует линейная корреляционная зависимость:
а) найти уравнения прямых регрессии, построить их графики на одном чертеже с эмпирическими линиями регрессии и дать экономическую интерпретацию полученных уравнений;
б) вычислить коэффициент корреляции; на уровне значимости a = 0,05 оценить его значимость и сделать вывод о тесноте и направлении связи между переменными X и Y;
в) используя соответствующее уравнение регрессии, определить среднюю стоимость произведенной продукции, если стоимость основных производственных фондов составляет 45 млн. руб.
Список использованной литературы»
Форма заказа готовой работы
Выдержка из похожей работы
элементарных исходов равно n = 6 * 6 = 36,
Событию А
благоприятствуют пары (5;6), (6;6), (6;5), число
которых равно m = 3,
Следовательно,
Р(А) = m/n = 3/36 = 0,83+
Задача 2(39)
Приведена схема
соединения элементов, образующих цепь
с одним входом и одним выходом,
Предполагается, что отказы элементов
являются независимыми в совокупности
событиями, Отказ любого из элементов
приводит к прерыванию сигнала в той
ветви цепи, где находится данный элемент,
Вероятности отказа элементов 1, 2, 3, 4, 5,
6 соответственно равны q1=0,1;
q2=0,2;
q3=0,3;
q4=0,4;
q5=0,5
q6=0,6
, Найти вероятность того, что сигнал
пройдет со входа на выход,
1 2
3
Решение,
Аi
– работает
i-ый
элемент;
— не работает i-ый
элемент
=
=(0,9*0,7+0,8*0,6-0,9*0,8*0,7*0,6)*(0,5+0,4-0,5*0,4)=0,5653+
Задача 3(27)
Имеются три
одинаковых по виду ящика, В первом ящике
20 белых шаров, во втором — 10 белых и 10
черных шаров, в третьем — 20 черных шаров,
Из каждого ящика вынули шар, Затем из
этих трех шаров наугад взяли один шар,
Вычислить вероятность того, что шар
белый,
Решение,
А = {вынутый шар —
белый};
Вi
= {шар вынули из i-го
ящика};
p(B1)=20/60=1/3;
p(B2)=1/3;
p(B3)=1/3
,
p(A/B1)=1;
p(A/B2)=1/2;
p(B3)=0
,
По формуле полной
вероятности
p(A)=p(B1)*p(A/B1)+p(B2)*p(A/B2)+p(B3)*p(A/B3)=
=1/3 * 1 +
1/3 * 1/2 + 1/3 * 0 =0,5
Задача 4(21)
Монету подбрасывают
восемь раз, Какова вероятность того,
что она четыре раза упадет гербом вверх?
Решение,
Вероятность
выпадения монеты гербом вверх p=1/2