Учебная работа № 6551. «Контрольная Математика — МА, вариант 1

Учебная работа № 6551. «Контрольная Математика — МА, вариант 1

Количество страниц учебной работы: 6
Содержание:
Задание 1. Из города А в город В ведут 5 дорог, и из города В в город С – три дороги. Сколько путей, проходящих через В, ведут из А в С?

Задание 2. Имеется 6 пар перчаток различных размеров. Сколькими способами можно выбрать из них одну перчатку на левую руку и одну – на правую так, чтобы выбранные перчатки были разных размеров?

Задание 3. Пять девушек и трое юношей играют в городки. Сколькими способами они могут разбиться на две команды по 4 человека, если в каждой команде должно быть хотя бы по одному юноше?

Задание 4. В купе железнодорожного вагона имеются два противоположных дивана по 5 мест на каждом. Из 10 пассажиров этого купе четверо желают сидеть лицом к паровозу, 3 – спиной к паровозу, а остальным безразлично как сидеть. Сколькими способами могут разместиться пассажиры с учетом их желаний?

Задание 5. В почтовом отделении продаются открытки десяти видов в неограниченном количестве. Сколькими способами можно купить 12 открыток?

Задание 6. В соревновании по гимнастике участвуют 10 человек практически одинаковых по степени мастерства. Трое судей должны независимо друг от друга перенумеровать их в порядке, отражающем их успехи в соревновании по мнению судей. Победителем считается тот, кого назовут первым хотя бы двое судей. В какой доле всех возможных случаев победитель будет определен?

Задание 7. В урне лежат 10 жетонов с числами 1, 2, 3, …, 10. Из нее, не выбирая, вынимают 3 жетона. Во скольких случаях сумма написанных на них чисел не меньше 9?

Задание 8. Человек имеет 6 друзей и в течении 20 дней приглашает к себе 3 из них так, что компания ни разу не повторяется. Сколькими способами может он это сделать?

Задание 9. На загородную прогулку поехали 92 человека. Бутерброды с колбасой взяли 47 человек, с сыром – 38 человек, с ветчиной – 42 человека, и с сыром и с колбасой – 28 человек, и с колбасой и с ветчиной – 31 человек, и с сыром и с ветчиной – 26 человек. Все три вида бутербродов взяли 25 человек, а несколько человек вместо бутербродов захватили с собой пирожки. Сколько человек взяли с собой пирожки?

Задание 10. Найти решение задачи, состоящей в определении максимального значения функции: … при условиях …

Стоимость данной учебной работы: 165 руб.Учебная работа № 6551.  "Контрольная Математика - МА, вариант 1
Форма заказа готовой работы

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы

    7182

    2) найдите
    расстояние между точками
    ина комплексной плоскости,

    Расстояние
    между точками Z1
    и Z3
    есть модуль
    их разности

    Задание
    3
    Решите систему
    уравнений тремя способами:
    1) методом Крамера;
    2) методом обратной
    матрицы;
    3) методом Гаусса,

    Решение
    задания 3,

    Метод
    Крамера

    Запишем систему
    в виде:
    BT
    = (-6,6,-4)
    Найдем главный
    определитель:
    ∆ = 2 х (-1 х 1-(-1 х
    (-2)))-3 х (-2 х 1-(-1 х 1))+1 х (-2 х (-2)-(-1 х 1)) = 2 = 2
    Заменим 1-ый столбец
    матрицы А на вектор результата В,

    Найдем определитель
    полученной матрицы,
    ∆1
    = -6 х (-1 х 1-(-1 х (-2)))-6 х (-2 х 1-(-1 х 1))+(-4 х (-2 х
    (-2)-(-1 х 1))) = 4

    Заменим 2-ый столбец
    матрицы А на вектор результата В,

    Найдем определитель
    полученной матрицы,
    ∆2
    = 2 х (6 х 1-(-4 х (-2)))-3 х (-6 х 1-(-4 х 1))+1 х (-6 х
    (-2)-6 х 1) = 8

    Заменим 3-ый столбец
    матрицы А на вектор результата В,

    Найдем определитель
    полученной матрицы,
    ∆3
    = 2 х (-1 х (-4)-(-1 х 6))-3 х (-2 х (-4)-(-1 х (-6)))+1 х (-2
    х 6-(-1 х (-6))) = -4

    Ответ: найденные
    переменные:
    ; ; ,

    2,
    Методом обратной матрицы;

    Обозначим
    через А — матрицу коэффициентов при
    неизвестных; X — матрицу-столбец
    неизвестных; B — матрицу-столбец свободных
    членов:

    Вектор
    B:
    BT=(-6,6,-4)С
    учетом этих обозначений данная система
    уравнений принимает следующую матричную
    форму: А*Х = B,Найдем
    главный определитель,
    ∆=2•(-1•1-(-1•(-2)))-3•(-2•1-(-1•1))+1•(-2•(-2)-(-1•1))=2
    ≠ 0Транспонированная
    матрица

    Вычислим
    алгебраические дополнения,
    ∆1,1=(-1•1-(-2•(-1)))=-3
    ∆1,2=-(-2•1-1•(-1))=1
    ∆1,3=(-2•(-2)-1•(-1))=5
    ∆2,1=-(3•1-(-2•1))=-5
    ∆2,2=(2•1-1•1)=1
    ∆2,3=-(2•(-2)-1•3)=7
    ∆3,1=(3•(-1)-(-1•1))=-2
    ∆3,2=-(2•(-1)-(-2•1))=0
    ∆3,3=(2•(-1)-(-2•3))=4

    Обратная
    матрица

    Вектор
    результатов X
    X=A-1
    • B

    XT=(2,4,-2)

    x1=4
    / 2=2
    x2=8
    / 2=4
    x3=-4
    / 2=-2

    Ответ:
    найденные
    переменные: x1=4
    / 2=2;
    x2=8
    / 2=4;
    x3=-4
    / 2=-2

    3) методом Гаусса,Запишем
    систему в виде расширенной матрицы:

    Умножим
    1-ую строку на (3), Умножим 2-ую строку на
    (-2), Добавим 2-ую строку к 1-ой:

    Умножим
    3-ую строку на (-3), Добавим 3-ую строку к
    2-ой:

    Умножим
    2-ую строку на (2), Добавим 2-ую строку к
    1-ой:

    Теперь
    исходную систему можно записать как:
    x3
    = 6/(-3)
    x2
    = [18 — ( — 5×3)]/2
    x1
    = [-4 — ( — x2
    + x3)]/1Из
    1-ой строки выражаем x3

    Из
    2-ой строки выражаем x2

    Из
    3-ой строки выражаем x1

    Ответ:
    найденные
    переменные: x1=2;
    x2=4;
    x3=-2

    Задание
    4
    Даны три вектора
    иДокажите, что векторыобразуют базис, и определите, какая это
    тройка векторов: правая или левая