Учебная работа № 6298. «Контрольная Симплекс + перебор решений вариант 1
Учебная работа № 6298. «Контрольная Симплекс + перебор решений вариант 1
Содержание:
«351. Дана задача линейного программирования в канонической форме.
1. Не учитывая условий неотрицательности переменных, найти все базисные решения системы АХ = В
361. Дана задача линейного программирования и ее план .
1. Данную задачу привести к канонической и стандартной формам.
371. Методом Гомори решить задачу линейного целочисленного программирования.
381. Методом потенциалов решить транспортную задачу, заданную следующей таблицей.
ai/bj 20 20 20 20
30 5 4 2 4
35 3 6 4 3
15 2 4 5 3
»
Выдержка из похожей работы
+ y
3 y
2 x
+ y
6 x + y
7 x
— 3y
3 -x + 2y
2
5,
Z = 4x + y 6, Z = 3x — y x
— 2y
0 2x + 3y
13 4x
— y
14 x
2 3x
+ y
7 5x — 3y
22
7,
Z = 2x + y 8, Z = x + 5y x
2 3x — y
3 4x
— y
8 x — y
4 x
— y
-1 x + y
6
9,
Z = 5x + y 10, Z = 3x x
— 4y
-3 x + y
7 4x
— 3y
14 2x — y
11 3x
+ y
4 4x + y
19
III, Решение задачи линейного программирования Симплекс-методом
Задача
линейного программирования (ЗЛП) (1) —
(3) (см, задание 2) называется канонической,
если все
ограничения вида (2) являются уравнениями
(равенствами), т,е, задачей линейного
программирования в канонической форме
называется задача:
Z
=
c1
x1
+ c2
x2
+ , , ,+ cn
xn
min (max) (1)при
ограничениях : a11
x1
+ a12
x2
+ , , ,+ a1n
xn
=
b1
a21
x1
+ a22
x2
+ , , ,+ a2n
xn
=
b2
(2)