Учебная работа № 6168. «Контрольная Эконометрика вариант 1
Учебная работа № 6168. «Контрольная Эконометрика вариант 1
Содержание:
Задача 1.
Предполагается, что объем предложения некоторого блага Y для функционирующей в условиях конкуренции фирмы зависит линейно от цены X этого блага и заработной платы Х сотрудников этой фирмы. Исходные данные за 16 месяцев представлены в таблице:
Задание:
1. Для заданного набора данных постройте линейную модель множественной регрессии. Оцените точность и адекватность построенного уравнения регрессии.
2. Дайте экономическую интерпретацию параметров модели.
3. Для полученной модели проверьте выполнение условия гомоскедастичности остатков, применив тест Голдфельда-Квандта.
4. Проверьте полученную модель на наличие автокорреляции остатков с помощью теста Дарвина-Уотсона.
5. Проверьте адекватно ли предположение об однородности исходных данных в регрессионном смысле. Можно ли объединить две выборки (по первым 8 и остальным 8 наблюдениям) в одну и рассматривать единую модель регрессии Y по Х.
Задача 2.
Изучается зависимость объема ВВП (Y, млрд. долл.) от уровня прибыли в экономике (Х, млрд. долл.). Получена следующая модель с распределенными лагами:
(2,2) (2,3) (2,5) (2,3) (2,4)
В скобках указаны значения t-критерия Стьюдента для коэффициентов регрессии. Значение .
Задание:
1. Проанализируйте полученные результаты регрессивного анализа.
2. Дайте интерпретацию параметров модели: определите краткосрочный и долгосрочный мультипликаторы.
3. Определите величину среднего лага и медианного лага.
Задача 3.
Структурная форма конъюнктурной модели имеет вид:
Где: С — расходы на потребление в период,
Y – чистый национальный продукт,
D – чистый национальный доход,
I – инвестиции,
Т – косвенные налоги,
G – государственные расходы,
t – текущий период,
t — 1 – предыдущий период.
Задание:
1. Проверить каждое уравнение модели на индентифицируемость, применив необходимое и достаточное условие идентифицируемости.
2. Записать приведенную форму модели.
3. Определите метод оценки структурных параметров каждого уравнения модели.
Список использованной литературы:
Выдержка из похожей работы
Вариант 5
Тип
школы
Хорошее
освоение курса (тыс,чел)
Среднее
освоение курса (тыс,чел)
Проблемы
с освоением курса (тыс,чел)
А
85,0
11,2
3,8
В
79,3
10,7
9,4
С
61,5
17,6
20,3
Преобразуем таблицу:
Тип
школы
Хорошее
освоение курса (тыс,чел)
Среднее
освоение курса (тыс,чел)
Проблемы
с освоением курса (тыс,чел)
Итого
А
85,0
11,2
3,8
100
В
79,3
10,7
9,4
99,4
С
61,5
17,6
20,3
99,4
Итого
225,8
39,5
33,5
298,8
Оценим
-коэффициент:
,,
,
,
18,83
связь слабая положительная,
———————————————————————————————————————
Оценим С-коэффициент сопряженности:
связь слабая
———————————————————————————————————————
Оценим V-коэффициент
Крамера:
=
=
0,18значимой связи нет
———————————————————————————————————————
Оценим коэффициент взаимной сопряженности
Чупрова:
,
φ2– это показатель взаимной
сопряженности, определяемый следующим
образом:
1+φ²=
85²/(225,8*100)+11,2²/(39,5*100)+3,8²/(33,5*100)+79,3²/(225,8*99,4)+10,7²/(39,5*99,4)+9,4²/((33,5*99,4)+61,5²/(225,8*99,4)+17,6²/(39,5*99,4)+20,3²/(33,5*99,4)=0,32+0,03+0,004+0,28+0,029+0,03+0,17+0,08+0,12=1,063
φ²=1,063-1=0,063
значимой связи нет,
Коэффициент ранговой корреляции
Спирмена:
Коэффициент корреляции Спирмена — это
аналог коэффициента корреляции Пирсона,
но подсчитанный для ранговых переменных,
вычисляется он по следующей формуле:
,
гдеd– разность рангов,
Высчитывается только для таблицы
размером 2*2,
———————————————————————————————————————
Коэффициент Юла
Коэффициент Юла подходит, если
рассматривается таблица 2*2, Т,е,
определяется сила связи между 2-мя
параметрами, каждый из которых принимает
только 2 значения,
На основании полученных коэффициентов
можно сделать вывод, что связь между
параметрами очень слабая положительная,
т,е, освоение курса практически не
зависит от типа школы,