Учебная работа № 5930. «Контрольная Вариант 8 линейное программирование

Учебная работа № 5930. «Контрольная Вариант 8 линейное программирование

Количество страниц учебной работы: 2
Содержание:
«Задание 1
Записать общий вид математической модели ЗЛП. Дать пояснение обозначений.

.

Задание 2

Дана симплекс-таблица к ЗЛП. Определить:
а) переменную, которую нужно ввести в список базисных переменных;
б) переменную, которую нужно вывести из списка базисных переменных;
в) элементы новой симплекс-таблицы a_13 и a_21.
Базис x1 x2 x3 x4 b_i
x3 11 2 1 0 25
x4 3 8 0 1 12
f -8 -11 0 0
»

Стоимость данной учебной работы: 585 руб.Учебная работа № 5930.  "Контрольная Вариант 8 линейное программирование

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы

    ,
    х1,х2- целые числа

    Нелинейное программирование,

    Найти условный экстремум с помощью
    метода Лагранжа:
    Z=x2+y2+xy+x+y- 4
    при условии, что х и х
    удовлетворяют уравнению:

    x+y+ 3 = 0,

    Решить задачу методом динамического
    программирования:

    Найти кратчайший путь из пункта Р0в пункт Р10 на сети, предварительно
    пронумеровав в ней все вершины, На ребрах
    сети указана длина пути между вершинами,

    11

    16
    4
    7 5
    Р0

    10

    10
    8
    12
    8

    9
    16
    4

    15
    14

    15
    11

    6 9
    12

    2

    Вариант 6
    Контрольная работа по
    курсу «Линейная алгебра»

    Векторы, матрицы, определители

    1,Вычислить определитель:

    сosα -sinα
    sinα сosα

    Упростить и вычислить определитель:

    ах а2+ х2 1
    ау а2+ у2 1
    аz а2+ z2 1

    Вычислить определитель, используя
    подходящее разложение

    по строке или столбцу:


    1 1
    0 -х -1
    х 1 -х

    Найти ранг системы векторов:
    → →
    а1= (1, 2, 3, 4) а2 =
    (2, 3, 4, 5)


    а3=(3, 4, 5, 6) а4 =
    (4, 5, 6, 7)

    Вычислить произведение матриц:

    5 0 2 3 6
    4 1 5 3 Х -2
    3 1 -1 2 7
    4

    Системы линейных уравнений,

    Решить систему уравнений по правилу
    Крамера:

    х + у – 2z= 6;
    2х + 3у – 7z= 16;
    5x + 2y + z = 16,

    Исследовать совместность и найти
    решение системы:

    х1+ х2– 6х3–
    4х4= 6;
    3х1– х2– 6х3–
    4х4=2;
    2х1+ 3х2+ 9х3+ 2х4
    = 6;
    3х1+ 2х2 + 3х3+ 8х4= -7,1

    Вариант 6
    III, Линейное и
    целочисленное программирование,

    1,Решить геометрически задачу
    линейного программирования:

    F= 2х1+
    →mаx
    при ограничениях:

    х1 +
    2х2≤ 8;
    2
    +2≤
    12;
    0 ≤ х1

    0

    Решить задачу линейного программирования,
    сформулированную в пункте 1, симплексным
    методом (или с помощью симплексных
    таблиц),

    Найти оптимальное решение задачи
    целочисленного линейного программирования:
    Z= 2х1+ 2х2→max

    при ограничениях:
    3х1- 2х2 ≥ -6;
    3х1+ х2≥ 3;
    х1 ≤ 3;
    х1≥ 0;
    х2≥ 0;
    х1,х2- целые числа,

    Нелинейное программирование,

    Найти условный экстремум с помощью
    метода Лагранжа:

    Z=
    1/х + 1/у
    при условии, что х и у
    удовлетворяют уравнению:
    х + у = 2,

    Используя метод динамического
    программирования, осуществить построение
    наивыгоднейшего пути между пунктами
    А и В, Двигаться от А к В можно либо
    строго на восток, либо строго на север,
    Стоимости прокладки пути между пунктами
    даны ниже в схеме,

    У север

    8 7 6 9 10 8 7 5
    11 В

    1012
    1110
    1211
    119
    1011
    910
    812
    78
    126

    129
    1011
    912
    814
    713
    1210
    119
    108
    1211

    1014
    911
    812
    910
    1211
    109
    1310
    148
    127

    812
    1312
    1011
    910
    1312
    1110
    98
    1213
    148
    А

    Х восток

    2

    Вариант
    7
    Контрольная работа
    по курсу «Линейная алгебра»