Учебная работа № 5578. «Контрольная Теория вероятности, 8 задач

Учебная работа № 5578. «Контрольная Теория вероятности, 8 задач

Количество страниц учебной работы: 13
Содержание:
«1. В мастерскую для ремонта поступило 18 телевизоров. Известно, что 6 штук из них нуждаются в общей регулировке. Мастер берет первое попавшиеся 5 штук. Какова вероятность того, что 2 из них нуждаются в общей регулировке?

2. В бригаде 7 мужчин и 5 женщин, на дежурство выделяется 5 человек. Какова вероятность того, что среди них хотя бы одна женщина?

3. Вероятность того, что утечка газа происходит на подземном участке газопровода равна 0,4, на подводном участке – 0,6. Вероятность обнаружения утечки за время T на подземном участке равна 0,7, на подводном – 0,8. Какова вероятность, что за время T утечка газа будет обнаружена?

4. Имеется n лампочек, каждая из них с вероятностью p имеет дефект. Лампочку ввинчивают в патрон и падают напряжение, после чего дефектная лампочка сразу же перегорает и заменяется другой. Случайная величина X – число лампочек, которое будет испробовано. Построить ряд распределения случайной величины X и ее функцию распределения F(x), найти ее математическое ожидание m_x, дисперсию D_x и вероятность того, что испробовано будет не более k лампочек.
n=5, p=0,2, k=4.

5. Дана функция f(x). При каком значении параметра C эта функция является плотностью распределения некоторой непрерывной случайной величины X? Найти ее математическое ожидание m_x, дисперсию D_x, функцию распределения F(x) и вероятность попадания на заданный интервал (?,?).
f(x)={?(0,x?-a,x?a,@C/?(a^2-x^2 ),-aСтоимость данной учебной работы: 585 руб.Учебная работа № 5578.  "Контрольная Теория вероятности, 8 задач

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы

    Вероятность того,
    что качество детали окажется отличным,
    для станка марки А равна 0,9; для станка
    марки В – 0,8; марки С – 0,7, Каково
    процентное содержание числа деталей
    отличного качества во всей продукции
    цеха?
    Монета бросается
    80 раз, Какова вероятность того, что герб
    выпадет не менее 35 раз?
    Из ящика, в котором
    4 белых и 6 черных шаров, вынимают шары
    по одному без возврата до появления
    черного шара, Составить закон распределения
    случайной величины Х
    – числа появившихся белых шаров, Найти
    М(Х)
    и D(X),
    Вес мотка пряжи
    – случайная величина, подчиненная
    нормальному закону с математическим
    ожиданием 100 г, Найти ее дисперсию, если
    отклонение веса мотка от среднего,
    превышающее 10 г, происходит с вероятностью
    0,05,
    Плотность
    распределения вероятностей непрерывной
    случайной величины Х
    имеет вид:

    Найти а,
    М(Х), D(X),
    P
    (-1/2 < X < 1/2), Найти коэффициент корреляции между величинами Х (вес алмазов в каратах) и Y (оптовая цена плоских шлифовальных алмазных кругов в тысячах рублей) на основании следующих данных: Х 1,55 2,49 4,6 6,0 7,7 Y 230 245 290 325 360 Найти уравнения линейной регрессии Y на Х и X на Y, Начертить графики этих уравнений в одной системе координат, Сделать вывод о силе линейной зависимости между Х и Y