Учебная работа № 5102. «Контрольная Высшая математика, 3 вариант
Учебная работа № 5102. «Контрольная Высшая математика, 3 вариант
Содержание:
Задание 1
Найти значение матричного многочлена D=2E-8A^T+6A^2, если A=(?(0&1&6@2&-2&4@-4&3&-1))
Задание 2
Вычислить определитель четвертого порядка: а) разложением по элементам ряда; б) сведением к треугольному виду:
|?(6&-4&-9&-5@1&7&5&-1@-2&-1&0&7@8&0&-1&1)|
Задание 3
Решить матричное уравнение:
(?(4&1@-3&2))?X?(?(1&-5@6&-2))=(?(-3&4@2&-4))
Задание 4
Исследовать систему на совместность и решить ее: а) по формулам Крамера; б) матричным способом:
{?(x_1-4x_2+2x_3=-5@2x_1+3x_2+4x_3=1@4x_1+x_2-3x_3=-3)?
Задание 5
Исследовать на совместность и решить систему:
{?(x_1+2x_2+4x_3-2x_4=5@?3x?_1-x_2-3x_3+x_4=10@?2x?_1-3x_2-7x_3+3x_4=5)?
Задание 6
Решить однородную систему алгебраических уравнений:
{?(3x_1+2x_2-5x_3=0@?5x?_1+4x_2-6x_3=0@?2x?_1+2x_2-x_3=0)?
Задание 7
A(-2;-4),B(10;5),C(8;-9)
Задание 8
A(13;10),B(3;5),C(15;-4)
Задание 10
A(2,2,0),B(1,2,5),C(-3,3,1),D(1,4,3)
Задание 11
Найти пределы функций:
lim?(x?-4)??(2x^2+3x-9)/(x^2+4x-6)
lim?(x?1)??(4x^2+x-5)/(x^2-2x+1)?
lim?(x??)??(16+4x-8x^3)/(-x-3x^2+4x^3 )
lim?(x?2)??(?(x+2)-2)/(x^2-4) ?
lim?(x?0)??(tg 7x)/sin?9x
lim?(x??)??(1-4/x)^(5x+2)
Задание 12
Провести полное исследование и построить график функций:
f(x)=xe^(0,5(1-x^2))
? ?
Выдержка из похожей работы
Найдём ранг основной
матрицы системы с помощью элементарных
преобразований:
~
~
Таким образом,
= 2
Так как ранг системы
меньше числа неизвестных, то система
имеет ненулевые решения, Размерность
пространства решений этой системы: n
– r
= 4 – 2 = 2
Преобразованная
система имеет вид:
<=>
<=>
<=>
Эти формулы дают
общее решение, В векторном виде его
можно записать следующим образом:
=
=
=
*
+
где
,
− произвольные числа
Вектор−столбцы:
=
и
=
образуют базис
пространства решений данной системы,
Задание 74,
Даны два линейных
преобразования, Средствами матричного
исчисления найти преобразование,
выражающее x1′′,
x2′′,
x3′′
через x1,
x2,
x3
Решение
Первое линейное
преобразование:
= A
*
имеет матрицу А =
Второе:
= B
*
имеет матрицу В =
(*)
Тогда если в (*)
вместо В и
поставить соответствующие матрицы,
получим:
C
= B
* A
, то есть
C
=
*
=
Поэтому искомое
линейное преобразование имеет вид:
=
*
Задание 84,
Найти собственные
значения и собственные векторы линейного
преобразования, заданного в некотором
базисе матрицей,
Составляем
характеристическое уравнение матрицы:
=
= 0
(5−λ)
*
+ 7 *
+ 0 *
= 0
(5−λ)
(1−λ)
(−3−λ)
+ 7 (−3) (−3−λ)
= 0 (**)
(5−6λ+)
(−3−λ)
+ 63 + 21λ
= 0
−15 +18λ
− 3
− 5λ
+ 6
−
+ 63 + 21λ
= 0
48 + 34λ
+ 3
−
= 0 <=> (**) (λ
– 8) (λ
+ 2) (λ
+ 3) = 0
то есть
= 8 ,
= −3 ,
= −2
При
= 8 система имеет вид:
=>
Выразим
через :
4 * (−7)
+ 6
= 11
−22
= 11
=>
= −0,5
Выразим
через :
12
+ 6*()
= 11
84
− 18
= 77
66
= 77
=>
= 1
Таким образом,
числу
= 8 соответствует собственный вектор:
=
=
=
где
− произвольное действительное число
Аналогично для
= −3
<=>
=
= 0
Таким образом,
числу
= −3 соответствует собственный вектор
=
=
=
Наконец для
= −2 решаем систему:
=>
то есть вектор
=
=
=
Итак, матрица А
имеет три собственных значения:
= 8 ,
= −3 ,
= −2, Соответствующие им собственные
векторы (с точностью до постоянного
множителя) равны:
=
=
=
Задача 94,
Привести к
каноническому виду уравнение линии
второго порядка, используя теорию
квадратичных форм,
Левая часть
уравнения
представляет собой квадратичную форму
с матрицей:
А =
Решаем
характеристическое уравнение:
= 0 , то есть
= 0
<=> (5−λ)
(3−λ)
= 8
− 8λ
+ 7 = 0
= 1 ,
= 7
Найдём собственные
векторы из системы уравнений
при
= 1 ,
= 7
Если
= 1 , то:
=>
=
Значит собственный
вектор
=
для
= 1
Если
= 7 , то:
=>
=
значит собственный
вектор
=
для
= 7
Нормируем собственные
векторы, по правилу:
=
, получаем:
=
=
Составляем матрицу
перехода от старого базиса к новому:
T
=
Выполняя
преобразования:
= T
=
*
=
=>
x
=
+
, y
= +
Подставим полученные
x
и y
в исходное уравнение и полученное
уравнение упростим:
5
+
+ 3
= 14
+
+ 22
+
= 14
+ 10
+ 10
− 8
− 4
+ 8
+ 6
− 6
+ 3
= 42
+ 21
= 42 =>
+
= 1 – каноническое уравнение эллипса