Учебная работа № 5027. «Контрольная Математические методы и модели в экономике, вариант 0
Учебная работа № 5027. «Контрольная Математические методы и модели в экономике, вариант 0
Содержание:
ЗАДАНИЕ 1
На основе отчетного межотраслевого баланса рассчитайте коэффициенты:
– прямых затрат,
– прямой трудоемкости единицы продукции,
– прямой фондоемкости единицы продукции.
По заданному на плановый период объему производства конечной продукции Yпл составить математические модели для определения в планируемом периоде:
– объемов производства валовой продукции,
– коэффициентов полной трудоемкости единицы продукции,
– коэффициентов полной фондоемкости единицы продукции.
Рассчитайте для отраслей планируемые:
– объемы производства валовой продукции,
– коэффициенты полной трудоемкости единицы продукции,
– коэффициенты полной фондоемкости единица продукции.
По результатам расчета найти:
– межотраслевые поставки продукции,
– объемы трудовых затрат,
– объемы основных фондов, необходимые для выполнения в плановом периоде заданной производственной программы.
Составить таблицу планового межотраслевого баланса.
ЗАДАНИЕ 2
В заготовительном цехе осуществляется раскрой труб для дальнейшей сборки из полученных деталей готового изделия в сварочном цехе предприятия. В один комплект входит а1 деталей длиной l1, а2 деталей длиной l2 и а3 деталей длиной l3. На складе заготовки данного типоразмера имеются трех видов: длиной L1, L2 и L3 в количествах N1, N2 и N3 , соответственно.
Составьте математические модели оптимального раскроя труб для следующих случаев:
1) получение максимального количества комплектов деталей из всех заготовок заданного типоразмера;
2) получение М комплектов деталей из наименьшего числа заготовок длиной L1;
3) получение М комплектов деталей из наименьшего числа заготовок длиной L2;
4) получение М комплектов деталей из наименьшего числа заготовок длиной L3;
5) получение М комплектов деталей из всех заготовок заданного типоразмера при минимальных отходах материала.
Рассчитать заданные математические модели оптимального раскроя и дать экономическое объяснение полученных результатов.
ЗАДАНИЕ 3
Необходимо за смену перевезти однородный груз от четырех поставщиков:
А1 – склад щебенки;
А2 – песчаный карьер;
А3 – угольный склад;
А4 – кирпичный завод
шести потребителям:
В1 – бетонный завод;
В2 – строительство дороги;
В3 – центральная котельная;
В4 – подсобное хозяйство;
В5 – строительство квартала;
В6 – строительство завода.
ЗАДАНИЕ 4
Комплексная бригада строителей численностью 20 человек возводит под ключ 2-х этажный жилой дом. Члены бригады могут выполнять любую из работ при строительстве дома. Перечень укрупненных работ и их нормативная трудоемкость, выраженная в человеко-часах, приведены в таблице
В условии задания а – последняя, b – предпоследняя цифра номера зачетной книжки.
Необходимо построить сетевой график строительства дома; осуществить предварительное распределение рабочих по работам сетевого графика; определить с учетом этого распределения продолжительность работ в днях (при получении дробных значений округлять в меньшую сторону, если первая десятичная цифра меньше или равна 3, в противном случае – в большую); с использованием компьютера рассчитать временные характеристики и критический путь сетевого графика; построить линейный план строительных работ и диаграмму потребности в рабочей силе; за счет перераспределения трудовых ресурсов с работ, не лежащих на критическом пути, сократить общее время строительных работ и стабилизировать трудовое использование рабочих.
Выдержка из похожей работы
Отрезок АС является границей бюджетного
множества, он перпендикулярен вектору
цен, При увеличенииQ
граница бюджетного множества движется
в направлении вектора цен (отрезок АС
переходит в MN
в результате увеличения дохода с 30
ден,ед, до 60 ден,ед,), При изменении цен
об изменении бюджетного множества можно
судить по движению точек
,,(отрезок АС переходит в АС’
в результате снижения цены товара
до 2,5 ден,ед,),
Задание 2
Даны зависимости
спроса D
и предложения S
от цены, Найдите равновесную цену, при
которой выручка максимальна и эту
максимальную выручку,
Вариант
Данные
10
D
= 300 – 4
p;
S
= 60 + 4 p
Решение:
Точка равновесия
характеризуется равенством спрос и
предложения, т,е, 300 – 4 p
= 60 + 4 p,
Равновесная цена p*
= 30 и выручка при равновесной цене W(p*)
= p*
* D(p*)
= p*
* S(p*)
= 5400,
При цене p
> p*
объем продаж и выручка определяется
функцией спроса, при p
< p*
- предложения, Необходимо найти цену
,
определяющую максимум выручки:
При p*(300
– 4 p)
максимум достигается в точке
37,5 (определяем максимум через производную),
выручкаW(37,5)
= 5625,
При p*(60
- 4 p)
максимум достигается в точке
7,5 (определяем максимум через производную),
выручкаW(7,5)
= 675,
Таким образом
максимальная выручка W(р)
= 5625 достигается не при равновесной
цене,
Задание 3
Найдите решение
матричной игры (оптимальные стратегии
и цену игры)