Учебная работа № 4989. «Контрольная Методы оптимальных решений, вариант 7
Учебная работа № 4989. «Контрольная Методы оптимальных решений, вариант 7
Содержание:
ТЕМА 1. МЕТОДЫ ПРИНЯТИЯ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ
«Принятие решения по политике цен»
Условие.
Производиться некоторый товар А. Исходные данные приведены в таблице.
Издержки на производство и сбыт продукции А
Наименование показателя Значение показателя
Затраты на производство 0,7 ден.ед./ единица продукции
Аренда техники и помещений 5000 ден.ед./ год
Заработная плата непроизводственного 10 000 ден.ед./год
персонала и административные расходы
Планируемая цена при продаже 1,5 ден.ед./ единица продукции
Планируемые расходы на рекламу 2000 ден.ед./ год
Требуется определить:
1. Сколько продукции надо продавать, чтобы сделать задуманное предприятие самоокупаемым?
2. Сколько продукции надо продать, чтобы получить 1000 ден.ед. прибыли?
3. Какое решение будет лучшим при установлении цены, если известно, что, продавая продукцию по 1,5 ден. ед. за единицу, можно прогнозировать уровень продаж в 1500 единиц продукции в месяц, а по цене 3 ден.ед. – 500 единиц продукции в месяц?
ТЕМА 2. ПРИНЯТИЕ РЕШЕНИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ
Выберите оптимальную стратегию (Р) выпуска пластмассовых изделий при различных состояниях внешней среды (S) для компании, производящей хозяйственные товары из пластмассы, основываясь на критерии максимина. Необходимая информация для принятия решения приведена в таблице эффективности производства (дохода).
Стратегии Состояние среды
S1 S2 S3 S4
Р1 400 200 300 100
Р2 300 100 150 200
Р3 150 180 200 170
Необходимо решить методами Лапласса, Вальда, Сэведжа, Гурвица.
ТЕМА 3. ПРИНЯТИЯ РЕШЕНИЙ В ЗАДАЧАХ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ.\
Для производства трех видов продукции A, B, C используется три вида сырья I, II, III. Нормы затрат каждого из видов сырья на единицу продукции каждого вида, а также прибыль с единицы продукции приведены в таблице. Определить план выпуска продукции для получения максимальной прибыли при условии, что сырье III должно быть полностью израсходовано.
Сырье Продукция Запас сырья
А В С
I 4 12 1 64
II 6 8 1 64
III 2 4 1 24
Прибыль 7 3 1
ТЕМА 4 ПРИНЯТИЕ РЕШЕНИЙ НА ОСНОВЕ ТЕОРИИ ИГР
Министерство желает построить один из двух объектов на территории города. Городские власти могут принять предложение министерства или отказать. Министерство — первый игрок — имеет две стратегии: строить 1-йобъект, строить 2-й объект. Город — второй игрок — имеет две стратегии: принять предложение министерства или отказать. Свои действия (стратегии) они применяют независимо друг от друга, и результаты определяются прибылью (выигрышем) согласно следующим матрицам: .
ТЕМА 5. ПРИНЯТИЕ РЕШЕНИЙ НА ОСНОВЕ БАЛАНСОВОЙ МОДЕЛИ
Рассматривается двухотраслевая модель экономики. Задана балансовая таблица за прошедший год.
1. Найдите валовой выпуск каждой отрасли в прошедшем году; запишите вектор валового выпуска для прошедшего года.
2. Найдите матрицу Леонтьева A. Сделать проверку продуктивности матрицы прямых затрат.
3. Найдите матрицу полных затрат H.
4. В следующем году конечное потребление продукции отрасли I увеличится на a %, а отрасли II—уменьшится на b %. Найдите конечное потребление продукции каждой отрасли в следующем году. Запишите вектор конечного потребления для следующего года.
5. Найдите валовой выпуск каждой отрасли в следующем году; запишите вектор валового выпуска для прошедшего года.
6. На сколько процентов изменился валовой выпуск каждой отрасли в следующем году по сравнению с прошедшим?
7. Известен вектор норм добавленной стоимости v в прошедшем году. Найдите равновесные цены продукции каждой отрасли в прошедшем году. Запишите вектор равновесных цен p
8. На основании расчетов п.4-7, принятии решение: стоит или нет увеличивать конечное потребление продукции каждой отрасли.
9. Что показывает равновесная цена. Как данная цена влияет на принятия решения по увеличению конечного потребления продукции.
Отрасли производства Производственное потребление Конечное потребление
отрасли I отрасли II
I 4 7 5
II 7 1 5
Выдержка из похожей работы
,А3находится однородный
груз в количествеа1,а2,а3, Этот груз необходимо
развести пяти потребителямB1,B2,B3,B4,B5,
потребности которых в данном грузе
составляютb1,b2,b3,b4,b5соответственно,
Стоимость перевозок пропорциональна
расстоянию и количеству перевозимого
груза, Матрица тарифовcij
(тыс,руб,/т,) и значенияа1,а2 ,а3;b1,b2,b3,b4,b5приведены ниже:
а1 = 200т;
а2 = 250т;
а3 = 250т;
b1 = 80т;
b2 = 260т;
b3 = 100т;
b4 = 140т;b5
= 120т;
Требуется спланировать
для транспортной задачи (ТЗ)
первоначальные планы перевозокxijдвумя способами (метод северо-западного
угла, метод минимальной стоимости) и
определить для полученных планов
значения целевой функции,
4, Методом потенциалов
провести 2 шага улучшения первоначального
плана ТЗ
из задания 3, полученного по методу
«северо-западного» угла, Записать
полученное решение и вычислить для
него значение целевой функции,Контрольная работа по методам оптимальных решений Вариант 8,
1, Построить допустимую область для
заданной системы линейных неравенств
и найти координаты угловых вершин
полученной области
2, Найти графическим способом наибольшее
и наименьшее значение целевой функции
zпри заданных условиях
z=-2x+y
max (min)
при условии
( y-x
1, y+x
3, y
1, x
3)
3, На трёх базах А1,А2
,А3находится однородный
груз в количествеа1,а2,а3, Этот груз необходимо
развести пяти потребителямB1,B2,B3,B4,B5,
потребности которых в данном грузе
составляютb1,b2,b3,b4,b5соответственно,
Стоимость перевозок пропорциональна
расстоянию и количеству перевозимого
груза, Матрица тарифовcij
(тыс,руб,/т