Учебная работа № 4700. «Контрольная Теория вероятности, 8 вариант
Учебная работа № 4700. «Контрольная Теория вероятности, 8 вариант
Содержание:
ЗАДАЧА №1
8. В магазине представлена обувь 3-х фабрик: 30% обуви поставила фабрика 1, 25% – фабрика 2, остальную обувь – фабрика 3. Покупатель выбирает обувь наудачу. Процент возврата обуви, изготовленной фабрикой 1 – 3%, фабрикой 2 – 1%, фабрикой 3 – 0,5%. Найти вероятности событий А = {обувь покупателем не будет возвращена}, В = {невозвращенная обувь изготовлена фабрикой 3}.
ЗАДАЧА №2
18. Задана функция распределения непрерывной случайной величины Х. Требуется:
1) найти плотность распределения вероятностей ;
2) определить коэффициент А;
3) схематично простроить графики и ;
4) найти математическое ожидание и дисперсию Х;
5) найти вероятность того, что Х примет значение из интервала .
и .
ЗАДАЧА №3
28. Заданы математическое ожидание и среднеквадратическое отклонение нормально распределенной случайной величины Х. Требуется:
1) написать плотность распределения вероятностей и схематично построить ее график;
2) найти вероятность того, что Х примет значение из интервала ,
, , , .
ЗАДАЧА №4
38. . Определить сколько раз надо провести опыт, чтобы с вероятностью большей, чем 0,9 можно было ожидать отклонения относительной частоты появления события А от не более, чем 0,05.
ЗАДАЧА №5
48. В результате 10 независимых измерений некоторой величины Х, выполненных с одинаковой точностью, получены опытные данные, приведенные в таблице. Предполагая, что результаты измерений подчинены нормальному закону распределения вероятностей, оценить истинное значение величины Х при помощи доверительного интервала, покрывающего истинное значение величины Х с доверительной вероятностью 0,95.
ЗАДАЧА №6
58. Отдел технического контроля проверил n партий однотипных изделий и установил, что число Х нестандартных изделий в одной партии имеет эмпирическое распределение, приведенное в таблице, в одной строке которой n
указано количество нестандартных изделий в одной партии, а в другой строке – количество партий, содержащих нестандартных изделий. Требуется при уровне значимости проверить гипотезу о том, что случайная величина Х (число нестандартных изделий в одной партии) распределена по закону Пуассона.
Выдержка из похожей работы
В ящик, содержащий 4 шара, добавили 4
белых шара, после чего из него наудачу
извлечен 1 шар, Найти вероятность того,
что извлеченный шар окажется белым,
если равновозможны все предположения
о первоначальном составе шаров по
цвету,3,
Три лампочки включены последовательно
в цепь, Вероятность перегорания любой
из них равна 0,5, Найти вероятность
того, что при повышенном напряжении
тока в цепи не будет,4,
Дискретная случайная величина задана
законом распределения вероятностей:
Х
-2
1
3
Р
0,1
0,3
0,6
Найти дисперсию
случайной величины 3Х,
Математическое
ожидание и среднее квадратическое
отклонение нормально распределенной
случайной величины Х соответственно
равны 10 и 2, Найти вероятность того,
что в результате испытания Х примет
значение, заключенное в интервале
(12;14),
Контрольная
работа №6
«Элементы теории
вероятностей»
Вариант – 2
1, В конверте 10
фотокарточек, среди них 6 нужных, Наугад
достали 4 фотокарточки, Найти вероятность
того, что среди них 3 нужных,
2, В ящик, содержащий
2 шара, добавили 6 белых шаров, после
чего из него наудачу извлечен один
шар, Найти вероятность того что
извлеченный шар окажется белым, если
равновозможны все предположения о
первоначальном составе шаров по цвету,
3, Вероятность
одного попадания в цель при залпе из
2-х орудий равна 0,44, Найти вероятность
поражения цели при одном выстреле
1-ым орудием, если для 2-го эта вероятность
равна 0,8