Учебная работа № 4697. «Контрольная Теория вероятности 4
Учебная работа № 4697. «Контрольная Теория вероятности 4
Содержание:
Решите задачи:
1) В конверте среди 100 фотокарточек находится одна разыскиваемая. Из конверта наудачу извлечены 10 карточек. Найти вероятность того, что среди них окажется нужная.
2) Считая вероятность безотказной работы станка в течение смены равной 0,9, найти вероятность безотказной работы двух станков в течении смены.
3) Среди 25 электрических лампочек четыре нестандартные. Найти вероятность того, что две взятые одновременно лампочки окажутся нестандартными.
4) В урне имеется 5 шаров с номерами от 1 до 5. Наудачу по одному извлекают три шара без возвращения. Найти вероятности следующих событий:
а) последовательно появятся шары с номерами 1, 4, 5;
б) извлечённые шары будут иметь номера 1, 4, 5 независимо от того, в какой последовательности они появятся.
5) Вероятность выигрыша по одному билету лотереи равна 1/7. Какова вероятность того, что лицо, имеющее шесть билетов:
а) выиграет по двум билетам;
б) выиграет по трём билетам;
в) не выиграет по двум билетам?
6) На сборку поступило 3000 деталей с первого станка и 2000 со второго. Первый станок даёт 0,2%, а второй 0,3% брака. Найти вероятность того, что взятая наудачу деталь из не рассортированной продукции станков окажется бракованной.
7) Для участия в студенческих отборочных спортивных соревнованиях выделено из первой группы четыре студента, из второй – шесть, из третьей – пять студентов. Вероятности того, что отобранный студент из первой, второй, третьей группы попадёт в сборную института, равны соответственно 0,5 0,4 и 0,3. Наудачу выбранный участник соревнований попал в сборную. К какой из этих трёх групп он вероятнее всего принадлежит?
8) Найти экстремум функции z = x2 + 3xy + y2 при условии x + y = 6 методом Лагранжа
Выдержка из похожей работы
элементарных исходов равно n = 6 * 6 = 36,
Событию А
благоприятствуют пары (5;6), (6;6), (6;5), число
которых равно m = 3,
Следовательно,
Р(А) = m/n = 3/36 = 0,83+
Задача 2(39)
Приведена схема
соединения элементов, образующих цепь
с одним входом и одним выходом,
Предполагается, что отказы элементов
являются независимыми в совокупности
событиями, Отказ любого из элементов
приводит к прерыванию сигнала в той
ветви цепи, где находится данный элемент,
Вероятности отказа элементов 1, 2, 3, 4, 5,
6 соответственно равны q1=0,1;
q2=0,2;
q3=0,3;
q4=0,4;
q5=0,5
q6=0,6
, Найти вероятность того, что сигнал
пройдет со входа на выход,
1 2
3
Решение,
Аi
– работает
i-ый
элемент;
— не работает i-ый
элемент
=
=(0,9*0,7+0,8*0,6-0,9*0,8*0,7*0,6)*(0,5+0,4-0,5*0,4)=0,5653+
Задача 3(27)
Имеются три
одинаковых по виду ящика, В первом ящике
20 белых шаров, во втором — 10 белых и 10
черных шаров, в третьем — 20 черных шаров,
Из каждого ящика вынули шар, Затем из
этих трех шаров наугад взяли один шар,
Вычислить вероятность того, что шар
белый,
Решение,
А = {вынутый шар —
белый};
Вi
= {шар вынули из i-го
ящика};
p(B1)=20/60=1/3;
p(B2)=1/3;
p(B3)=1/3
,
p(A/B1)=1;
p(A/B2)=1/2;
p(B3)=0
,
По формуле полной
вероятности
p(A)=p(B1)*p(A/B1)+p(B2)*p(A/B2)+p(B3)*p(A/B3)=
=1/3 * 1 +
1/3 * 1/2 + 1/3 * 0 =0,5
Задача 4(21)
Монету подбрасывают
восемь раз, Какова вероятность того,
что она четыре раза упадет гербом вверх?
Решение,
Вероятность
выпадения монеты гербом вверх p=1/2