Учебная работа № 4696. «Контрольная Контрольная по математике 2
Учебная работа № 4696. «Контрольная Контрольная по математике 2
Содержание:
Задание 1
Условие
Находящийся на станциях груз нужно развести на склады.
На станции A весь груз можно погрузить на 80 машин,
а на станции B – на 100 машин.
Склады должны принять:
1 склад – 50 машин
2 склад – 70 машин
3 склад – 60 машин
Количество бензина в литрах, которое расходует 1 машина на пробег
Склады
1 2 3
A 2 4 5
B 4 5 3
Составить план перевозок, при котором общий расход бензина будет наименьшим.
Задание 2
Задание 3
Задание 4.19
Задание 4.20
Задание 4.21
Выдержка из похожей работы
а)
Однородное
дифференциальное уравнение 1- го порядка,
Имеем:
б)
в)
(1),
Это д/у Бернулли,
Делим (1) на
:
Пусть
,
тогдаОтсюда (2) будет:
Получили линейное
д/у:
Решаем его методом
вариации произвольной постоянной:
Решаем соответствующее
однородное д/у:
Общее решение д/у
(3) ищем в виде:
,
где с(х) – функция
от х,
Тогда:
Подставим (4) и (5)
в (3):
Подставив (6) в (4),
получаем общее решение уравнения(3):
Можно решение
записать в виде:
2,Решить задачу
Коши:
3,Для уравнения
а) Найти общее
решение соответствующего однородного
уравнения
;
б) Найти частное
решение неоднородного уравнения, если
записать общее решение этого уравнения
в)Найти частное
решение, удовлетворяющее начальным
условиям
г) Записать
частное решение с неопределенными
коэффициентами, если
Решение:
а),
Имеем однородное д/у 3-го порядка
Характеристическое
уравнение:
Отсюда фундаментальная
система решений д/у (1):
Общее решение
однородного д/у (1):
б),
Имеем неоднородное д/у:
так как правая
часть имеет вид:
У нас
отсюда
частное решение д/у (3) ищем в виде:
Трижды дифференцируем
(4):
Подставим (5) – (7)
в (3):
Приравниваем
коэффициенты:
Отсюда, подставив
в (4) А=2, В=0, получаем частное решение
неоднородного Д/у (3):
Так как общее
решение д/у (3):
Подставив в (9)
выражения (2) и (8), получаем:
в),
Дважды дифференцируем (10):
Подставим начальные
условия в (10) – (12):
Подставив в (10)
получаем
частное решение д/у (3) при заданных
начальных условиях:
г),
Имеем:
Выше мы нашли корни
характеристического уравнения:
Так как правая
часть д/у (14) имеет вид:
Частное решение
д/у
(14):
Подставив в (18)
выражения (15) – (17), получаем частное
решение д/у (14) с неопределёнными
коэффициентами:
4,Найти общее
решение системы дифференциальных
уравнений:
однородная система
Собственные числа
Собственные векторы
(-2;1);(2;1)
Тогда, фундаментальная
система: