Учебная работа № /8188. «Контрольная Теория вероятности, задачи 1, 2, 3, задания 3, 4, 5

Учебная работа № /8188. «Контрольная Теория вероятности, задачи 1, 2, 3, задания 3, 4, 5

Количество страниц учебной работы: 10
Содержание:
1. В старинной игре в кости необходимо было для выигрыша получить при бросании двух игральных костей сумму очков, превосходящую 9. Найти вероятности: а) выпадения 9 очков; б) выигрыша.
2. Известно, что в среднем 60% всего числа изготавливаемых заводом телефонных аппаратов являются продукцией первого сорта. Чему равна вероятность того, что в изготовленной партии из 10 аппаратов окажется: а) 6 аппаратов первого сорта; б) хотя бы один аппарат первого сорта?
. В билете 3 задачи. Вероятность правильного решения первой задачи равна 0,9, второй – 0,8, третьей – 0,7. Составить закон распределения числа правильно решенных задач в билете. Построить полигон распределения.
Задание 3. Студентка первого курса в течение дня 8 раз разговаривала по телефону. Продолжительность разговоров составила 25, 130, 242, 48, 152, 138, 55 и 136 секунд. Её подруга в этот день имела 6 телефонных разговоров продолжительностью 28; 128; 138; 235; 45 и 156 секунд.
Для обеих выборок вычислите среднее, исправленную дисперсию и среднее квадратическое отклонение. Найдите размах варьирования, среднее абсолютное (линейное) отклонение, коэффициент вариации, линейный коэффициент вариации, коэффициент осцилляции. Предполагая, что данная случайная величина имеет нормальное распределение, определите доверительный интервал для генеральной средней (в обоих случаях).
По критерию Фишера проверьте гипотезу о равенстве генеральных дисперсий. По критерию Стьюдента проверьте гипотезу о равенстве генеральных средних (альтернативная гипотеза – об их неравенстве).
Во всех расчётах уровень значимости = 0,05.
Задание 4. Кафедра проводит исследование зависимости знаний студентов от количества пропущенных занятий. При этом были получены следующие результаты, сведённые в корреляционную таблицу:
x \ y 1-4 5-8 9-12 13-16 17-20
0-20 1 4 5 5
21-40 1 5 8 4 3
41-60 10 22 10 3 1
61-80 20 15 80 2 1
Здесь x – количество баллов, полученных студентом при выполнении контрольной работы, y – количество пропущенных этим студентом часов (лекционных и практических).
Напишите уравнения прямой и обратной регрессий для данных величин. Постройте соответствующие графики. Найдите коэффициент корреляции рассматриваемых величин. По критерию Стьюдента проверьте гипотезу о существенности корреляционной связи, уровень значимости = 0,05.
Задание 5. На химическом предприятии проверяется влияние температуры (фактор А) и катализатора (фактор В) на выход продукта химического синтеза. Полученные результаты приведены в таблице. Проведите двухфакторный дисперсионный анализ. При уровне значимости a = 0,05 проверьте гипотезу о влиянии факторов А и В и их комбинации на указанный признак. Предварительно проверьте по критерию Кочрена равенство дисперсий в группах.
В1 В2 В3
А1 16; 19; 17; 18; 16; 17 16; 16; 18
А2 22; 22; 19 18; 19; 23 18; 16; 19
А3 20; 16; 18 18; 17; 19 20; 20; 16
А4 23; 20; 22 19; 18; 19 20; 19; 20
А5 25; 26; 29 22; 23; 19 25; 24; 27

Стоимость данной учебной работы: 585 руб.Учебная работа № /8188.  "Контрольная Теория вероятности, задачи 1, 2, 3, задания 3, 4, 5

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы

    Р,
    Минск 2011

    Номер задания

    1

    2

    3

    4

    5

    6

    7

    8

    9

    Номер варианта

    35

    28

    34

    37

    23

    22

    30

    15

    2

    Задача № 1,35

    В урне 3 белых и 7 черных шаров, Из урны вынимают сразу 6 шаров, Найти вероятность того, что все шесть шаров черные,
    Решение
    Событие А — все шесть вынутых шаров черные,
    Общее число шаров в урне равно 10, Число n всех равновероятных исходов опыта равно числу способов, которыми можно из 10 шаров вынуть 6:
    Число благоприятствующих исходов, учитывая, что шары черные:
    Вероятность того, что все шары черные:
    Ответ: p=0,033

    Задача № 2,28

    Дана схема соединения элементов, образующих цепь с одним входом и одним выходом (рисунок 1), Предполагается, что отказы элементов являются независимыми в совокупности событиями, Отказ любого из элементов приводит к прерыванию сигнала в той ветви цепи, где находится данный элемент, Вероятности отказа элементов 1, 2, 3, 4, 5 соответственно равны q1=0,1; q2=0,2; q3=0,3; q4=0,4; q5=0,5, Найти вероятность того, что сигнал пройдет со входа на выход,
    Рисунок 1
    Решение
    Введем события: A1 — элемент 1 исправен, A2 — элемент 2 исправен, A3 — элемент 3 исправен, A4 — элемент 4 исправен, A5 — элемент 5 исправен, B- сигнал проходит от точки a к точке b, С- сигнал проходит от точки b к точке c, D- сигнал проходит от точки a к точке c (со входа на выход),
    Событие B произойдёт, если будут работать или элемент 1, или элемент 2, или элемент 3:
    Вероятность наступления события B:

    Событие C произойдёт, если будут работать и элемент 4 и элемент 5:
    Вероятность наступления события С:
    Соответственно, вероятность наступления события D:
    Ответ:
    Задача №3,34
    математический ожидание дисперсия величина
    Группа студентов состоит из пяти отличников, десяти хорошо успевающих и семи занимающихся слабо, Отличники на предстоящем экзамене могут получить только отличные оценки, Хорошо успеваю��ие студенты могут получить с равной вероятностью хорошие и отличные оценки, Слабо занимающиеся могут получить с равной вероятностью хорошие, удовлетворительные и неудовлетворительные оценки, Для сдачи экзамена вызывается наугад один студент, Найти вероятность того, что студент получит отличную оценку,
    Решение
    Обозначим через А событие — студент получит отличную оценку
    Общее количество студентов, равно 22, Обозначим через:
    вероятность вызова отличника;
    вероятность вызова хорошиста;
    вероятность вызова слабого студента,
    Сделаем ряд предположений:
    — вызван отличник, Получена отличная оценка:
    — вызван хорошист, Получена отличная оценка:
    — вызван хорошист, Получена хорошая оценка:
    — вызван слабый студент, Получена хорошая оценка:
    — вызван слабый студент, Получена удовлетворительная оценка:
    — вызван слабый студент, Получена неудовлетворительная оценка:
    Событие А однозначно произойдёт при гипотезах H1, H2 и не произойдет в остальных случаях, Следовательно условные вероятности события A:
    По формуле полной вероятности найдём вероятность события A:

    Ответ:
    Задача №4″